How to calculate implied correlation via observed market price (Margrabe option)Can the Heston model be shown to reduce to the original Black Scholes model if appropriate parameters are chosen?Calculate volatility from call option priceImplied Correlation using market quotesImplied Vol vs. Calibrated VolInterpretation of CorrelationPricing of Black-Scholes with dividendHow do they calculate stocks implied volatility?Implied correlationEuropean option Vega with respect to expiry and implied volatilityIs American option price lower than European option price?
What is the range of this combined function?
Can fracking help reduce CO2?
What word means to make something obsolete?
Python "triplet" dictionary?
Why is current rating for multicore cable lower than single core with the same cross section?
How to stop co-workers from teasing me because I know Russian?
Modify locally tikzset
Confusion about capacitors
Illegal assignment from SObject to Contact
Given what happens in Endgame, why doesn't Dormammu come back to attack the universe?
Is it possible to Ready a spell to be cast just before the start of your next turn by having the trigger be an ally's attack?
How to replace the "space symbol" (squat-u) in listings?
Build a trail cart
How can Republicans who favour free markets, consistently express anger when they don't like the outcome of that choice?
What is the strongest case that can be made in favour of the UK regaining some control over fishing policy after Brexit?
Weird result in complex limit
Airbnb - host wants to reduce rooms, can we get refund?
Was it really necessary for the Lunar Module to have 2 stages?
Did Henry V’s archers at Agincourt fight with no pants / breeches on because of dysentery?
Is it possible to measure lightning discharges as Nikola Tesla?
Has any spacecraft ever had the ability to directly communicate with civilian air traffic control?
Where does the labelling of extrinsic semiconductors as "n" and "p" come from?
Unexpected email from Yorkshire Bank
What is the difference between `a[bc]d` (brackets) and `ab,cd` (braces)?
How to calculate implied correlation via observed market price (Margrabe option)
Can the Heston model be shown to reduce to the original Black Scholes model if appropriate parameters are chosen?Calculate volatility from call option priceImplied Correlation using market quotesImplied Vol vs. Calibrated VolInterpretation of CorrelationPricing of Black-Scholes with dividendHow do they calculate stocks implied volatility?Implied correlationEuropean option Vega with respect to expiry and implied volatilityIs American option price lower than European option price?
$begingroup$
I can't seem to figure out how to do the following: compute the implied correlation $ρ_imp$ by using the observed market price $M_quote$ of a Margrabe option, and solving the non-linear equation shown below:
$$M_quote = e^−q_0Ttimes S_0(0)times N(d_+)−e^−q_1Ttimes S_1(0)times N(d_−)$$
where:
$$beginalign
& d_pm = fraclogfracS_0(0)S_1(0)+(q_1 − q_0 ±σ^2/2)TsigmasqrtT
\[4pt]
& sigma = sqrtsigma^2_0 + sigma^2_1 − 2rho_impsigma_0 sigma_1
endalign$$
Note that $d_− = d_+ − σsqrtT$.
black-scholes correlation european-options implied nonlinear
$endgroup$
add a comment |
$begingroup$
I can't seem to figure out how to do the following: compute the implied correlation $ρ_imp$ by using the observed market price $M_quote$ of a Margrabe option, and solving the non-linear equation shown below:
$$M_quote = e^−q_0Ttimes S_0(0)times N(d_+)−e^−q_1Ttimes S_1(0)times N(d_−)$$
where:
$$beginalign
& d_pm = fraclogfracS_0(0)S_1(0)+(q_1 − q_0 ±σ^2/2)TsigmasqrtT
\[4pt]
& sigma = sqrtsigma^2_0 + sigma^2_1 − 2rho_impsigma_0 sigma_1
endalign$$
Note that $d_− = d_+ − σsqrtT$.
black-scholes correlation european-options implied nonlinear
$endgroup$
1
$begingroup$
Bear in mind that what you're calculating is the margrabe option implied correlation, it's not necessarily the correct correlation to use for pricing other options, it's important to be aware of that.
$endgroup$
– will
Apr 8 at 19:48
add a comment |
$begingroup$
I can't seem to figure out how to do the following: compute the implied correlation $ρ_imp$ by using the observed market price $M_quote$ of a Margrabe option, and solving the non-linear equation shown below:
$$M_quote = e^−q_0Ttimes S_0(0)times N(d_+)−e^−q_1Ttimes S_1(0)times N(d_−)$$
where:
$$beginalign
& d_pm = fraclogfracS_0(0)S_1(0)+(q_1 − q_0 ±σ^2/2)TsigmasqrtT
\[4pt]
& sigma = sqrtsigma^2_0 + sigma^2_1 − 2rho_impsigma_0 sigma_1
endalign$$
Note that $d_− = d_+ − σsqrtT$.
black-scholes correlation european-options implied nonlinear
$endgroup$
I can't seem to figure out how to do the following: compute the implied correlation $ρ_imp$ by using the observed market price $M_quote$ of a Margrabe option, and solving the non-linear equation shown below:
$$M_quote = e^−q_0Ttimes S_0(0)times N(d_+)−e^−q_1Ttimes S_1(0)times N(d_−)$$
where:
$$beginalign
& d_pm = fraclogfracS_0(0)S_1(0)+(q_1 − q_0 ±σ^2/2)TsigmasqrtT
\[4pt]
& sigma = sqrtsigma^2_0 + sigma^2_1 − 2rho_impsigma_0 sigma_1
endalign$$
Note that $d_− = d_+ − σsqrtT$.
black-scholes correlation european-options implied nonlinear
black-scholes correlation european-options implied nonlinear
edited Apr 8 at 16:57
Daneel Olivaw
3,1331729
3,1331729
asked Apr 7 at 22:25
TaraTara
186
186
1
$begingroup$
Bear in mind that what you're calculating is the margrabe option implied correlation, it's not necessarily the correct correlation to use for pricing other options, it's important to be aware of that.
$endgroup$
– will
Apr 8 at 19:48
add a comment |
1
$begingroup$
Bear in mind that what you're calculating is the margrabe option implied correlation, it's not necessarily the correct correlation to use for pricing other options, it's important to be aware of that.
$endgroup$
– will
Apr 8 at 19:48
1
1
$begingroup$
Bear in mind that what you're calculating is the margrabe option implied correlation, it's not necessarily the correct correlation to use for pricing other options, it's important to be aware of that.
$endgroup$
– will
Apr 8 at 19:48
$begingroup$
Bear in mind that what you're calculating is the margrabe option implied correlation, it's not necessarily the correct correlation to use for pricing other options, it's important to be aware of that.
$endgroup$
– will
Apr 8 at 19:48
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $rhotriangleqrho_imp$. Note that:
$$fracpartial sigmapartial rho(rho)=-fracsigma_0sigma_1sigma(rho)<0$$
Therefore $sigma$ is monotonic in implied correlation. In addition, the Margrabe pricing function $M(cdot)$ is also monotonic in volatility $sigma$ thus you can find an unique solution to the equation:
$$tag1M_textquote=M(rho)$$
where:
$$M(rho)=e^−q_0TS_0(0)N(d_+)−e^−q_1TS_1(0)N(d_−)$$
and $d_pm$ as defined in your question, with $M_textquote$ the observed market price. In practice, this can be restated as:
$$beginalign
&min_rholeft(M(rho)-M_textquoteright)^2tag2
\
& texts.t. rho in [-1,1]
endalign$$
because $(M(rho)-M_textquote)^2geq0$. This is an optimization problem which can be solved through traditional techniques:
- The solution suggested by @Alex C will give you a quick, approximate answer;
- If you want arbitrary precision, you can use a simple Newton algorithm on either $(1)$ or $(2)$ with root value $rho=0$, this is quick to program in Excel VBA, or you can maybe even find an online tool that does it. This PDF explains the method for a vanilla call in a Black-Scholes framework to find the implied volatility, but the set-up is very similar. Another alternative is gradient descent but this would probably take longer to program and you have to do it on $(2)$;
- You can also use Excel's Solver to find a solution to $(1)$ directly. I have tried with $S_0(0)=$101$, $S_1(0)=$113.5$, $sigma_0=45%$, $sigma_1=37%$, $T=1text year$ and $q_0=q_1=0$ and it has worked just fine.
$endgroup$
add a comment |
$begingroup$
We know that $-1lerho_imple 1$ so perhaps the simplest approach is to try the possible values $rho_imp=-1,-0.9,-0.8,cdots,0.8,0.9,+1$, to calculate resulting $sigma$ values, d± values, and $M_quote$ values, then see which of these is closest to the observed market price. If desired you can then search a finer grid between two adjacent assumed correlations to pin it down more precisely. It is a manual but relatively simple method.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "204"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquant.stackexchange.com%2fquestions%2f44977%2fhow-to-calculate-implied-correlation-via-observed-market-price-margrabe-option%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $rhotriangleqrho_imp$. Note that:
$$fracpartial sigmapartial rho(rho)=-fracsigma_0sigma_1sigma(rho)<0$$
Therefore $sigma$ is monotonic in implied correlation. In addition, the Margrabe pricing function $M(cdot)$ is also monotonic in volatility $sigma$ thus you can find an unique solution to the equation:
$$tag1M_textquote=M(rho)$$
where:
$$M(rho)=e^−q_0TS_0(0)N(d_+)−e^−q_1TS_1(0)N(d_−)$$
and $d_pm$ as defined in your question, with $M_textquote$ the observed market price. In practice, this can be restated as:
$$beginalign
&min_rholeft(M(rho)-M_textquoteright)^2tag2
\
& texts.t. rho in [-1,1]
endalign$$
because $(M(rho)-M_textquote)^2geq0$. This is an optimization problem which can be solved through traditional techniques:
- The solution suggested by @Alex C will give you a quick, approximate answer;
- If you want arbitrary precision, you can use a simple Newton algorithm on either $(1)$ or $(2)$ with root value $rho=0$, this is quick to program in Excel VBA, or you can maybe even find an online tool that does it. This PDF explains the method for a vanilla call in a Black-Scholes framework to find the implied volatility, but the set-up is very similar. Another alternative is gradient descent but this would probably take longer to program and you have to do it on $(2)$;
- You can also use Excel's Solver to find a solution to $(1)$ directly. I have tried with $S_0(0)=$101$, $S_1(0)=$113.5$, $sigma_0=45%$, $sigma_1=37%$, $T=1text year$ and $q_0=q_1=0$ and it has worked just fine.
$endgroup$
add a comment |
$begingroup$
Let $rhotriangleqrho_imp$. Note that:
$$fracpartial sigmapartial rho(rho)=-fracsigma_0sigma_1sigma(rho)<0$$
Therefore $sigma$ is monotonic in implied correlation. In addition, the Margrabe pricing function $M(cdot)$ is also monotonic in volatility $sigma$ thus you can find an unique solution to the equation:
$$tag1M_textquote=M(rho)$$
where:
$$M(rho)=e^−q_0TS_0(0)N(d_+)−e^−q_1TS_1(0)N(d_−)$$
and $d_pm$ as defined in your question, with $M_textquote$ the observed market price. In practice, this can be restated as:
$$beginalign
&min_rholeft(M(rho)-M_textquoteright)^2tag2
\
& texts.t. rho in [-1,1]
endalign$$
because $(M(rho)-M_textquote)^2geq0$. This is an optimization problem which can be solved through traditional techniques:
- The solution suggested by @Alex C will give you a quick, approximate answer;
- If you want arbitrary precision, you can use a simple Newton algorithm on either $(1)$ or $(2)$ with root value $rho=0$, this is quick to program in Excel VBA, or you can maybe even find an online tool that does it. This PDF explains the method for a vanilla call in a Black-Scholes framework to find the implied volatility, but the set-up is very similar. Another alternative is gradient descent but this would probably take longer to program and you have to do it on $(2)$;
- You can also use Excel's Solver to find a solution to $(1)$ directly. I have tried with $S_0(0)=$101$, $S_1(0)=$113.5$, $sigma_0=45%$, $sigma_1=37%$, $T=1text year$ and $q_0=q_1=0$ and it has worked just fine.
$endgroup$
add a comment |
$begingroup$
Let $rhotriangleqrho_imp$. Note that:
$$fracpartial sigmapartial rho(rho)=-fracsigma_0sigma_1sigma(rho)<0$$
Therefore $sigma$ is monotonic in implied correlation. In addition, the Margrabe pricing function $M(cdot)$ is also monotonic in volatility $sigma$ thus you can find an unique solution to the equation:
$$tag1M_textquote=M(rho)$$
where:
$$M(rho)=e^−q_0TS_0(0)N(d_+)−e^−q_1TS_1(0)N(d_−)$$
and $d_pm$ as defined in your question, with $M_textquote$ the observed market price. In practice, this can be restated as:
$$beginalign
&min_rholeft(M(rho)-M_textquoteright)^2tag2
\
& texts.t. rho in [-1,1]
endalign$$
because $(M(rho)-M_textquote)^2geq0$. This is an optimization problem which can be solved through traditional techniques:
- The solution suggested by @Alex C will give you a quick, approximate answer;
- If you want arbitrary precision, you can use a simple Newton algorithm on either $(1)$ or $(2)$ with root value $rho=0$, this is quick to program in Excel VBA, or you can maybe even find an online tool that does it. This PDF explains the method for a vanilla call in a Black-Scholes framework to find the implied volatility, but the set-up is very similar. Another alternative is gradient descent but this would probably take longer to program and you have to do it on $(2)$;
- You can also use Excel's Solver to find a solution to $(1)$ directly. I have tried with $S_0(0)=$101$, $S_1(0)=$113.5$, $sigma_0=45%$, $sigma_1=37%$, $T=1text year$ and $q_0=q_1=0$ and it has worked just fine.
$endgroup$
Let $rhotriangleqrho_imp$. Note that:
$$fracpartial sigmapartial rho(rho)=-fracsigma_0sigma_1sigma(rho)<0$$
Therefore $sigma$ is monotonic in implied correlation. In addition, the Margrabe pricing function $M(cdot)$ is also monotonic in volatility $sigma$ thus you can find an unique solution to the equation:
$$tag1M_textquote=M(rho)$$
where:
$$M(rho)=e^−q_0TS_0(0)N(d_+)−e^−q_1TS_1(0)N(d_−)$$
and $d_pm$ as defined in your question, with $M_textquote$ the observed market price. In practice, this can be restated as:
$$beginalign
&min_rholeft(M(rho)-M_textquoteright)^2tag2
\
& texts.t. rho in [-1,1]
endalign$$
because $(M(rho)-M_textquote)^2geq0$. This is an optimization problem which can be solved through traditional techniques:
- The solution suggested by @Alex C will give you a quick, approximate answer;
- If you want arbitrary precision, you can use a simple Newton algorithm on either $(1)$ or $(2)$ with root value $rho=0$, this is quick to program in Excel VBA, or you can maybe even find an online tool that does it. This PDF explains the method for a vanilla call in a Black-Scholes framework to find the implied volatility, but the set-up is very similar. Another alternative is gradient descent but this would probably take longer to program and you have to do it on $(2)$;
- You can also use Excel's Solver to find a solution to $(1)$ directly. I have tried with $S_0(0)=$101$, $S_1(0)=$113.5$, $sigma_0=45%$, $sigma_1=37%$, $T=1text year$ and $q_0=q_1=0$ and it has worked just fine.
edited Apr 9 at 22:24
answered Apr 8 at 17:05
Daneel OlivawDaneel Olivaw
3,1331729
3,1331729
add a comment |
add a comment |
$begingroup$
We know that $-1lerho_imple 1$ so perhaps the simplest approach is to try the possible values $rho_imp=-1,-0.9,-0.8,cdots,0.8,0.9,+1$, to calculate resulting $sigma$ values, d± values, and $M_quote$ values, then see which of these is closest to the observed market price. If desired you can then search a finer grid between two adjacent assumed correlations to pin it down more precisely. It is a manual but relatively simple method.
$endgroup$
add a comment |
$begingroup$
We know that $-1lerho_imple 1$ so perhaps the simplest approach is to try the possible values $rho_imp=-1,-0.9,-0.8,cdots,0.8,0.9,+1$, to calculate resulting $sigma$ values, d± values, and $M_quote$ values, then see which of these is closest to the observed market price. If desired you can then search a finer grid between two adjacent assumed correlations to pin it down more precisely. It is a manual but relatively simple method.
$endgroup$
add a comment |
$begingroup$
We know that $-1lerho_imple 1$ so perhaps the simplest approach is to try the possible values $rho_imp=-1,-0.9,-0.8,cdots,0.8,0.9,+1$, to calculate resulting $sigma$ values, d± values, and $M_quote$ values, then see which of these is closest to the observed market price. If desired you can then search a finer grid between two adjacent assumed correlations to pin it down more precisely. It is a manual but relatively simple method.
$endgroup$
We know that $-1lerho_imple 1$ so perhaps the simplest approach is to try the possible values $rho_imp=-1,-0.9,-0.8,cdots,0.8,0.9,+1$, to calculate resulting $sigma$ values, d± values, and $M_quote$ values, then see which of these is closest to the observed market price. If desired you can then search a finer grid between two adjacent assumed correlations to pin it down more precisely. It is a manual but relatively simple method.
answered Apr 7 at 23:49
Alex CAlex C
6,77211123
6,77211123
add a comment |
add a comment |
Thanks for contributing an answer to Quantitative Finance Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquant.stackexchange.com%2fquestions%2f44977%2fhow-to-calculate-implied-correlation-via-observed-market-price-margrabe-option%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Bear in mind that what you're calculating is the margrabe option implied correlation, it's not necessarily the correct correlation to use for pricing other options, it's important to be aware of that.
$endgroup$
– will
Apr 8 at 19:48