Minimization algorithm that can consider gradient close to solutionDoes gradient descent always converge to an optimum?Is there a machine learning framework that supports partial evaluation ie can return a function?What are some machine learning problems that can be attacked with continuous multiobjective optimization?

Airbnb - host wants to reduce rooms, can we get refund?

"ne paelici suspectaretur" (Tacitus)

Colliding particles and Activation energy

Given what happens in Endgame, why doesn't Dormammu come back to attack the universe?

Lock in SQL Server and Oracle

A question regarding using the definite article

Binary Numbers Magic Trick

Does a creature that is immune to a condition still make a saving throw?

Volunteering in England

Pressure to defend the relevance of one's area of mathematics

Do I have to worry about players making “bad” choices on level up?

Is thermodynamics only applicable to systems in equilibrium?

Pulling the rope with one hand is as heavy as with two hands?

Are Boeing 737-800’s grounded?

Why do Ichisongas hate elephants and hippos?

Can fracking help reduce CO2?

Any examples of headwear for races with animal ears?

Confusion about capacitors

Morally unwholesome deeds knowing the consequences but without unwholesome intentions

How to stop co-workers from teasing me because I know Russian?

Help, my Death Star suffers from Kessler syndrome!

Has any spacecraft ever had the ability to directly communicate with civilian air traffic control?

What word means to make something obsolete?

Are some sounds more pleasing to the ear, like ㄴ and ㅁ?



Minimization algorithm that can consider gradient close to solution


Does gradient descent always converge to an optimum?Is there a machine learning framework that supports partial evaluation ie can return a function?What are some machine learning problems that can be attacked with continuous multiobjective optimization?













0












$begingroup$


I want to minimize a function which has sharp gradients close to each local minimum. Due to process tolerances, I want to find solutions which meet some minimum criterion (e.g. lower than x), but have a shallow gradient near to the found minimum.



My question is: is this simply a case of me assigning a penalty factor to minima with sharp nearby gradients, or is there a class of algorithm that can handle this sort of constraint as part of its optimization routine?










share|improve this question









$endgroup$











  • $begingroup$
    What do you mean by "sharp"?
    $endgroup$
    – anymous.asker
    Nov 8 '18 at 19:51










  • $begingroup$
    @anymous.asker: large gradient.
    $endgroup$
    – Sean
    Nov 8 '18 at 21:27










  • $begingroup$
    Well, every local optima should have a small gradient around that turns to zero as it approaches it, otherwise it wouldn't be a local optimum. If the gradients are not lipschitz, then gradient descent might not be the right tool for the job. If you are up to coding something yourself, you might want to use something like guided local search, perhaps by adding log-barriers or something at those minima. Or you might want to instead try global optimization techniques not based on gradients. Would be helpful if you could provide an example.
    $endgroup$
    – anymous.asker
    Nov 9 '18 at 7:45










  • $begingroup$
    @anymous.asker: I mean that, for a good solution, the approach to the minimum should be shallow, i.e. the rate of change of the function should be less than some parameter. My question is essentially about whether this parameter is something I have to define in my cost function, or if there are algorithms that can consider this property already. Currently I'm trying to find existing algorithms before attemping to code something myself. Right now I just don't know what to search for.
    $endgroup$
    – Sean
    Nov 9 '18 at 8:10










  • $begingroup$
    @anymous.asker: I don't have a problem providing the solution except it's a large piece of code that I don't think is relevant. My question is more about classes of algorithm rather than the intricacies of my particular problem right now.
    $endgroup$
    – Sean
    Nov 9 '18 at 8:11















0












$begingroup$


I want to minimize a function which has sharp gradients close to each local minimum. Due to process tolerances, I want to find solutions which meet some minimum criterion (e.g. lower than x), but have a shallow gradient near to the found minimum.



My question is: is this simply a case of me assigning a penalty factor to minima with sharp nearby gradients, or is there a class of algorithm that can handle this sort of constraint as part of its optimization routine?










share|improve this question









$endgroup$











  • $begingroup$
    What do you mean by "sharp"?
    $endgroup$
    – anymous.asker
    Nov 8 '18 at 19:51










  • $begingroup$
    @anymous.asker: large gradient.
    $endgroup$
    – Sean
    Nov 8 '18 at 21:27










  • $begingroup$
    Well, every local optima should have a small gradient around that turns to zero as it approaches it, otherwise it wouldn't be a local optimum. If the gradients are not lipschitz, then gradient descent might not be the right tool for the job. If you are up to coding something yourself, you might want to use something like guided local search, perhaps by adding log-barriers or something at those minima. Or you might want to instead try global optimization techniques not based on gradients. Would be helpful if you could provide an example.
    $endgroup$
    – anymous.asker
    Nov 9 '18 at 7:45










  • $begingroup$
    @anymous.asker: I mean that, for a good solution, the approach to the minimum should be shallow, i.e. the rate of change of the function should be less than some parameter. My question is essentially about whether this parameter is something I have to define in my cost function, or if there are algorithms that can consider this property already. Currently I'm trying to find existing algorithms before attemping to code something myself. Right now I just don't know what to search for.
    $endgroup$
    – Sean
    Nov 9 '18 at 8:10










  • $begingroup$
    @anymous.asker: I don't have a problem providing the solution except it's a large piece of code that I don't think is relevant. My question is more about classes of algorithm rather than the intricacies of my particular problem right now.
    $endgroup$
    – Sean
    Nov 9 '18 at 8:11













0












0








0





$begingroup$


I want to minimize a function which has sharp gradients close to each local minimum. Due to process tolerances, I want to find solutions which meet some minimum criterion (e.g. lower than x), but have a shallow gradient near to the found minimum.



My question is: is this simply a case of me assigning a penalty factor to minima with sharp nearby gradients, or is there a class of algorithm that can handle this sort of constraint as part of its optimization routine?










share|improve this question









$endgroup$




I want to minimize a function which has sharp gradients close to each local minimum. Due to process tolerances, I want to find solutions which meet some minimum criterion (e.g. lower than x), but have a shallow gradient near to the found minimum.



My question is: is this simply a case of me assigning a penalty factor to minima with sharp nearby gradients, or is there a class of algorithm that can handle this sort of constraint as part of its optimization routine?







optimization






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 8 '18 at 16:55









SeanSean

1011




1011











  • $begingroup$
    What do you mean by "sharp"?
    $endgroup$
    – anymous.asker
    Nov 8 '18 at 19:51










  • $begingroup$
    @anymous.asker: large gradient.
    $endgroup$
    – Sean
    Nov 8 '18 at 21:27










  • $begingroup$
    Well, every local optima should have a small gradient around that turns to zero as it approaches it, otherwise it wouldn't be a local optimum. If the gradients are not lipschitz, then gradient descent might not be the right tool for the job. If you are up to coding something yourself, you might want to use something like guided local search, perhaps by adding log-barriers or something at those minima. Or you might want to instead try global optimization techniques not based on gradients. Would be helpful if you could provide an example.
    $endgroup$
    – anymous.asker
    Nov 9 '18 at 7:45










  • $begingroup$
    @anymous.asker: I mean that, for a good solution, the approach to the minimum should be shallow, i.e. the rate of change of the function should be less than some parameter. My question is essentially about whether this parameter is something I have to define in my cost function, or if there are algorithms that can consider this property already. Currently I'm trying to find existing algorithms before attemping to code something myself. Right now I just don't know what to search for.
    $endgroup$
    – Sean
    Nov 9 '18 at 8:10










  • $begingroup$
    @anymous.asker: I don't have a problem providing the solution except it's a large piece of code that I don't think is relevant. My question is more about classes of algorithm rather than the intricacies of my particular problem right now.
    $endgroup$
    – Sean
    Nov 9 '18 at 8:11
















  • $begingroup$
    What do you mean by "sharp"?
    $endgroup$
    – anymous.asker
    Nov 8 '18 at 19:51










  • $begingroup$
    @anymous.asker: large gradient.
    $endgroup$
    – Sean
    Nov 8 '18 at 21:27










  • $begingroup$
    Well, every local optima should have a small gradient around that turns to zero as it approaches it, otherwise it wouldn't be a local optimum. If the gradients are not lipschitz, then gradient descent might not be the right tool for the job. If you are up to coding something yourself, you might want to use something like guided local search, perhaps by adding log-barriers or something at those minima. Or you might want to instead try global optimization techniques not based on gradients. Would be helpful if you could provide an example.
    $endgroup$
    – anymous.asker
    Nov 9 '18 at 7:45










  • $begingroup$
    @anymous.asker: I mean that, for a good solution, the approach to the minimum should be shallow, i.e. the rate of change of the function should be less than some parameter. My question is essentially about whether this parameter is something I have to define in my cost function, or if there are algorithms that can consider this property already. Currently I'm trying to find existing algorithms before attemping to code something myself. Right now I just don't know what to search for.
    $endgroup$
    – Sean
    Nov 9 '18 at 8:10










  • $begingroup$
    @anymous.asker: I don't have a problem providing the solution except it's a large piece of code that I don't think is relevant. My question is more about classes of algorithm rather than the intricacies of my particular problem right now.
    $endgroup$
    – Sean
    Nov 9 '18 at 8:11















$begingroup$
What do you mean by "sharp"?
$endgroup$
– anymous.asker
Nov 8 '18 at 19:51




$begingroup$
What do you mean by "sharp"?
$endgroup$
– anymous.asker
Nov 8 '18 at 19:51












$begingroup$
@anymous.asker: large gradient.
$endgroup$
– Sean
Nov 8 '18 at 21:27




$begingroup$
@anymous.asker: large gradient.
$endgroup$
– Sean
Nov 8 '18 at 21:27












$begingroup$
Well, every local optima should have a small gradient around that turns to zero as it approaches it, otherwise it wouldn't be a local optimum. If the gradients are not lipschitz, then gradient descent might not be the right tool for the job. If you are up to coding something yourself, you might want to use something like guided local search, perhaps by adding log-barriers or something at those minima. Or you might want to instead try global optimization techniques not based on gradients. Would be helpful if you could provide an example.
$endgroup$
– anymous.asker
Nov 9 '18 at 7:45




$begingroup$
Well, every local optima should have a small gradient around that turns to zero as it approaches it, otherwise it wouldn't be a local optimum. If the gradients are not lipschitz, then gradient descent might not be the right tool for the job. If you are up to coding something yourself, you might want to use something like guided local search, perhaps by adding log-barriers or something at those minima. Or you might want to instead try global optimization techniques not based on gradients. Would be helpful if you could provide an example.
$endgroup$
– anymous.asker
Nov 9 '18 at 7:45












$begingroup$
@anymous.asker: I mean that, for a good solution, the approach to the minimum should be shallow, i.e. the rate of change of the function should be less than some parameter. My question is essentially about whether this parameter is something I have to define in my cost function, or if there are algorithms that can consider this property already. Currently I'm trying to find existing algorithms before attemping to code something myself. Right now I just don't know what to search for.
$endgroup$
– Sean
Nov 9 '18 at 8:10




$begingroup$
@anymous.asker: I mean that, for a good solution, the approach to the minimum should be shallow, i.e. the rate of change of the function should be less than some parameter. My question is essentially about whether this parameter is something I have to define in my cost function, or if there are algorithms that can consider this property already. Currently I'm trying to find existing algorithms before attemping to code something myself. Right now I just don't know what to search for.
$endgroup$
– Sean
Nov 9 '18 at 8:10












$begingroup$
@anymous.asker: I don't have a problem providing the solution except it's a large piece of code that I don't think is relevant. My question is more about classes of algorithm rather than the intricacies of my particular problem right now.
$endgroup$
– Sean
Nov 9 '18 at 8:11




$begingroup$
@anymous.asker: I don't have a problem providing the solution except it's a large piece of code that I don't think is relevant. My question is more about classes of algorithm rather than the intricacies of my particular problem right now.
$endgroup$
– Sean
Nov 9 '18 at 8:11










2 Answers
2






active

oldest

votes


















1












$begingroup$

Well, that’s a tricky question. Do the gradients turn large somehow because they are discontinuous? (gradient descent will likely not work then) Is it maybe because the variables are in too different scales (Newton & related would help)? Is there some sort of barrier that would limit the domain (e.g. log(x))? Does the function have some flat uniform area, e.g. __/? Are these saddle points? Is your problem constrained and these are solutions at the boundaries? In some of these cases, switching to something different like subgradients might help you, but this highly depends on the reason why your problem has these optima that you want to avoid.



Generally speaking, gradient-based techniques converge to whatever local optimum they find first, and if you are not happy with that, you’ll have to use other metaheuristics (e.g. add restarts, incorporate penalties at known optima, use derivative-free methods). Perhaps other techniques that carry momentum like ADAM might somehow allow you to dodge these too.






share|improve this answer









$endgroup$












  • $begingroup$
    My function is continuous. I don't think there are saddle points, just local minima of different depths. There are 6 parameters given to the function, each with the same bounds (they can be between 0 and 0.5). Thank you for your help. I think I will investigate gradient-free methods. I tried a basin hopping algorithm in SciPy, which seems to jump around the parameter space and then try to find the local minimum using gradient descent, which worked reasonably well as far as I can tell but didn't have an option to look for "shallow" minima.
    $endgroup$
    – Sean
    Nov 9 '18 at 9:03



















0












$begingroup$

You can try Backtracking Gradient descent (as well as backtracking versions of Momentum and NAG). More details can be found in my answer in this link (and you can look at the cited paper and link to GitHub, for source code, for more detail):






share|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "557"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f40933%2fminimization-algorithm-that-can-consider-gradient-close-to-solution%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Well, that’s a tricky question. Do the gradients turn large somehow because they are discontinuous? (gradient descent will likely not work then) Is it maybe because the variables are in too different scales (Newton & related would help)? Is there some sort of barrier that would limit the domain (e.g. log(x))? Does the function have some flat uniform area, e.g. __/? Are these saddle points? Is your problem constrained and these are solutions at the boundaries? In some of these cases, switching to something different like subgradients might help you, but this highly depends on the reason why your problem has these optima that you want to avoid.



    Generally speaking, gradient-based techniques converge to whatever local optimum they find first, and if you are not happy with that, you’ll have to use other metaheuristics (e.g. add restarts, incorporate penalties at known optima, use derivative-free methods). Perhaps other techniques that carry momentum like ADAM might somehow allow you to dodge these too.






    share|improve this answer









    $endgroup$












    • $begingroup$
      My function is continuous. I don't think there are saddle points, just local minima of different depths. There are 6 parameters given to the function, each with the same bounds (they can be between 0 and 0.5). Thank you for your help. I think I will investigate gradient-free methods. I tried a basin hopping algorithm in SciPy, which seems to jump around the parameter space and then try to find the local minimum using gradient descent, which worked reasonably well as far as I can tell but didn't have an option to look for "shallow" minima.
      $endgroup$
      – Sean
      Nov 9 '18 at 9:03
















    1












    $begingroup$

    Well, that’s a tricky question. Do the gradients turn large somehow because they are discontinuous? (gradient descent will likely not work then) Is it maybe because the variables are in too different scales (Newton & related would help)? Is there some sort of barrier that would limit the domain (e.g. log(x))? Does the function have some flat uniform area, e.g. __/? Are these saddle points? Is your problem constrained and these are solutions at the boundaries? In some of these cases, switching to something different like subgradients might help you, but this highly depends on the reason why your problem has these optima that you want to avoid.



    Generally speaking, gradient-based techniques converge to whatever local optimum they find first, and if you are not happy with that, you’ll have to use other metaheuristics (e.g. add restarts, incorporate penalties at known optima, use derivative-free methods). Perhaps other techniques that carry momentum like ADAM might somehow allow you to dodge these too.






    share|improve this answer









    $endgroup$












    • $begingroup$
      My function is continuous. I don't think there are saddle points, just local minima of different depths. There are 6 parameters given to the function, each with the same bounds (they can be between 0 and 0.5). Thank you for your help. I think I will investigate gradient-free methods. I tried a basin hopping algorithm in SciPy, which seems to jump around the parameter space and then try to find the local minimum using gradient descent, which worked reasonably well as far as I can tell but didn't have an option to look for "shallow" minima.
      $endgroup$
      – Sean
      Nov 9 '18 at 9:03














    1












    1








    1





    $begingroup$

    Well, that’s a tricky question. Do the gradients turn large somehow because they are discontinuous? (gradient descent will likely not work then) Is it maybe because the variables are in too different scales (Newton & related would help)? Is there some sort of barrier that would limit the domain (e.g. log(x))? Does the function have some flat uniform area, e.g. __/? Are these saddle points? Is your problem constrained and these are solutions at the boundaries? In some of these cases, switching to something different like subgradients might help you, but this highly depends on the reason why your problem has these optima that you want to avoid.



    Generally speaking, gradient-based techniques converge to whatever local optimum they find first, and if you are not happy with that, you’ll have to use other metaheuristics (e.g. add restarts, incorporate penalties at known optima, use derivative-free methods). Perhaps other techniques that carry momentum like ADAM might somehow allow you to dodge these too.






    share|improve this answer









    $endgroup$



    Well, that’s a tricky question. Do the gradients turn large somehow because they are discontinuous? (gradient descent will likely not work then) Is it maybe because the variables are in too different scales (Newton & related would help)? Is there some sort of barrier that would limit the domain (e.g. log(x))? Does the function have some flat uniform area, e.g. __/? Are these saddle points? Is your problem constrained and these are solutions at the boundaries? In some of these cases, switching to something different like subgradients might help you, but this highly depends on the reason why your problem has these optima that you want to avoid.



    Generally speaking, gradient-based techniques converge to whatever local optimum they find first, and if you are not happy with that, you’ll have to use other metaheuristics (e.g. add restarts, incorporate penalties at known optima, use derivative-free methods). Perhaps other techniques that carry momentum like ADAM might somehow allow you to dodge these too.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered Nov 9 '18 at 8:40









    anymous.askeranymous.asker

    65618




    65618











    • $begingroup$
      My function is continuous. I don't think there are saddle points, just local minima of different depths. There are 6 parameters given to the function, each with the same bounds (they can be between 0 and 0.5). Thank you for your help. I think I will investigate gradient-free methods. I tried a basin hopping algorithm in SciPy, which seems to jump around the parameter space and then try to find the local minimum using gradient descent, which worked reasonably well as far as I can tell but didn't have an option to look for "shallow" minima.
      $endgroup$
      – Sean
      Nov 9 '18 at 9:03

















    • $begingroup$
      My function is continuous. I don't think there are saddle points, just local minima of different depths. There are 6 parameters given to the function, each with the same bounds (they can be between 0 and 0.5). Thank you for your help. I think I will investigate gradient-free methods. I tried a basin hopping algorithm in SciPy, which seems to jump around the parameter space and then try to find the local minimum using gradient descent, which worked reasonably well as far as I can tell but didn't have an option to look for "shallow" minima.
      $endgroup$
      – Sean
      Nov 9 '18 at 9:03
















    $begingroup$
    My function is continuous. I don't think there are saddle points, just local minima of different depths. There are 6 parameters given to the function, each with the same bounds (they can be between 0 and 0.5). Thank you for your help. I think I will investigate gradient-free methods. I tried a basin hopping algorithm in SciPy, which seems to jump around the parameter space and then try to find the local minimum using gradient descent, which worked reasonably well as far as I can tell but didn't have an option to look for "shallow" minima.
    $endgroup$
    – Sean
    Nov 9 '18 at 9:03





    $begingroup$
    My function is continuous. I don't think there are saddle points, just local minima of different depths. There are 6 parameters given to the function, each with the same bounds (they can be between 0 and 0.5). Thank you for your help. I think I will investigate gradient-free methods. I tried a basin hopping algorithm in SciPy, which seems to jump around the parameter space and then try to find the local minimum using gradient descent, which worked reasonably well as far as I can tell but didn't have an option to look for "shallow" minima.
    $endgroup$
    – Sean
    Nov 9 '18 at 9:03












    0












    $begingroup$

    You can try Backtracking Gradient descent (as well as backtracking versions of Momentum and NAG). More details can be found in my answer in this link (and you can look at the cited paper and link to GitHub, for source code, for more detail):






    share|improve this answer











    $endgroup$

















      0












      $begingroup$

      You can try Backtracking Gradient descent (as well as backtracking versions of Momentum and NAG). More details can be found in my answer in this link (and you can look at the cited paper and link to GitHub, for source code, for more detail):






      share|improve this answer











      $endgroup$















        0












        0








        0





        $begingroup$

        You can try Backtracking Gradient descent (as well as backtracking versions of Momentum and NAG). More details can be found in my answer in this link (and you can look at the cited paper and link to GitHub, for source code, for more detail):






        share|improve this answer











        $endgroup$



        You can try Backtracking Gradient descent (as well as backtracking versions of Momentum and NAG). More details can be found in my answer in this link (and you can look at the cited paper and link to GitHub, for source code, for more detail):







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Apr 9 at 4:01









        Stephen Rauch

        1,53551330




        1,53551330










        answered Apr 9 at 3:41









        TuyenTuyen

        313




        313



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Data Science Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f40933%2fminimization-algorithm-that-can-consider-gradient-close-to-solution%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

            Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

            Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?