How to handle columns with categorical data and many unique valuesdecision trees on mix of categorical and real value parametersPandas categorical variables encoding for regression (one-hot encoding vs dummy encoding)Imputation of missing values and dealing with categorical valuesHow to deal with categorical variablesOne hot encoding error “sort.list(y)…”One hot encoding vs Word embeddingHow to implement feature selection for categorical variables (especially with many categories)?ML Models: How to handle categorical feature with over 1000 unique values“Binary Encoding” in “Decision Tree” / “Random Forest” AlgorithmsDealing with multiple distinct-value categorical variables
Airbnb - host wants to reduce rooms, can we get refund?
In gnome-terminal only 2 out of 3 zoom keys work
Find the coordinate of two line segments that are perpendicular
How can I get precisely a certain cubic cm by changing the following factors?
Stark VS Thanos
Was it really necessary for the Lunar Module to have 2 stages?
Any examples of headwear for races with animal ears?
What does 「再々起」mean?
How to set the font color of quantity objects (Version 11.3 vs version 12)?
Sci-fi novel series with instant travel between planets through gates. A river runs through the gates
Pulling the rope with one hand is as heavy as with two hands?
If Earth is tilted, why is Polaris always above the same spot?
What's the polite way to say "I need to urinate"?
Pawn Sacrifice Justification
Is creating your own "experiment" considered cheating during a physics exam?
Single Colour Mastermind Problem
Is it possible to measure lightning discharges as Nikola Tesla?
Will tsunami waves travel forever if there was no land?
Transfer over $10k
Given what happens in Endgame, why doesn't Dormammu come back to attack the universe?
In the time of the mishna, were there Jewish cities without courts?
Do I have an "anti-research" personality?
Can fracking help reduce CO2?
How to determine the actual or "true" resolution of a digital photograph?
How to handle columns with categorical data and many unique values
decision trees on mix of categorical and real value parametersPandas categorical variables encoding for regression (one-hot encoding vs dummy encoding)Imputation of missing values and dealing with categorical valuesHow to deal with categorical variablesOne hot encoding error “sort.list(y)…”One hot encoding vs Word embeddingHow to implement feature selection for categorical variables (especially with many categories)?ML Models: How to handle categorical feature with over 1000 unique values“Binary Encoding” in “Decision Tree” / “Random Forest” AlgorithmsDealing with multiple distinct-value categorical variables
$begingroup$
I have a column with categorical data with nunique 3349 values, in a 18000k row dataset, which represent cities of the world.
I also have another column with 145 nunique values that I could also use in my model that represents product category.
Can I use one hot encoding to these columns or there's a problem with that solution?
Like which is the max number of unique values to use one hot encoding so there's not gonna be any problem ?
Can you point me to the right direction if I should use another encoding also?
machine-learning data categorical-data encoding
$endgroup$
add a comment |
$begingroup$
I have a column with categorical data with nunique 3349 values, in a 18000k row dataset, which represent cities of the world.
I also have another column with 145 nunique values that I could also use in my model that represents product category.
Can I use one hot encoding to these columns or there's a problem with that solution?
Like which is the max number of unique values to use one hot encoding so there's not gonna be any problem ?
Can you point me to the right direction if I should use another encoding also?
machine-learning data categorical-data encoding
$endgroup$
add a comment |
$begingroup$
I have a column with categorical data with nunique 3349 values, in a 18000k row dataset, which represent cities of the world.
I also have another column with 145 nunique values that I could also use in my model that represents product category.
Can I use one hot encoding to these columns or there's a problem with that solution?
Like which is the max number of unique values to use one hot encoding so there's not gonna be any problem ?
Can you point me to the right direction if I should use another encoding also?
machine-learning data categorical-data encoding
$endgroup$
I have a column with categorical data with nunique 3349 values, in a 18000k row dataset, which represent cities of the world.
I also have another column with 145 nunique values that I could also use in my model that represents product category.
Can I use one hot encoding to these columns or there's a problem with that solution?
Like which is the max number of unique values to use one hot encoding so there's not gonna be any problem ?
Can you point me to the right direction if I should use another encoding also?
machine-learning data categorical-data encoding
machine-learning data categorical-data encoding
asked Apr 8 at 11:04
dungeondungeon
395
395
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For categorical columns, you have two options :
- Entity Embeddings
- One Hot Vector
For a column with 145 values, I would use one hot encoding and Embedding for ~3k values. This decision might change depending on overall number of features.
Embeddings map feature values into a 1D vector so that model knows NYC, Paris, London are similar cities in one aspect (size) and very different in other aspects. So, instead of using ~3k column of features, model will have ~50 columns of vector representation.
Articles that explain Embeddings :
An Overview of Categorical Input Handling for Neural Networks
On learning embeddings for categorical data using Keras
Google Developers > Machine Learning > Embeddings: Categorical Input Data
Exploring Embeddings for Categorical Variables with Keras by Florian Teschner
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48875%2fhow-to-handle-columns-with-categorical-data-and-many-unique-values%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For categorical columns, you have two options :
- Entity Embeddings
- One Hot Vector
For a column with 145 values, I would use one hot encoding and Embedding for ~3k values. This decision might change depending on overall number of features.
Embeddings map feature values into a 1D vector so that model knows NYC, Paris, London are similar cities in one aspect (size) and very different in other aspects. So, instead of using ~3k column of features, model will have ~50 columns of vector representation.
Articles that explain Embeddings :
An Overview of Categorical Input Handling for Neural Networks
On learning embeddings for categorical data using Keras
Google Developers > Machine Learning > Embeddings: Categorical Input Data
Exploring Embeddings for Categorical Variables with Keras by Florian Teschner
$endgroup$
add a comment |
$begingroup$
For categorical columns, you have two options :
- Entity Embeddings
- One Hot Vector
For a column with 145 values, I would use one hot encoding and Embedding for ~3k values. This decision might change depending on overall number of features.
Embeddings map feature values into a 1D vector so that model knows NYC, Paris, London are similar cities in one aspect (size) and very different in other aspects. So, instead of using ~3k column of features, model will have ~50 columns of vector representation.
Articles that explain Embeddings :
An Overview of Categorical Input Handling for Neural Networks
On learning embeddings for categorical data using Keras
Google Developers > Machine Learning > Embeddings: Categorical Input Data
Exploring Embeddings for Categorical Variables with Keras by Florian Teschner
$endgroup$
add a comment |
$begingroup$
For categorical columns, you have two options :
- Entity Embeddings
- One Hot Vector
For a column with 145 values, I would use one hot encoding and Embedding for ~3k values. This decision might change depending on overall number of features.
Embeddings map feature values into a 1D vector so that model knows NYC, Paris, London are similar cities in one aspect (size) and very different in other aspects. So, instead of using ~3k column of features, model will have ~50 columns of vector representation.
Articles that explain Embeddings :
An Overview of Categorical Input Handling for Neural Networks
On learning embeddings for categorical data using Keras
Google Developers > Machine Learning > Embeddings: Categorical Input Data
Exploring Embeddings for Categorical Variables with Keras by Florian Teschner
$endgroup$
For categorical columns, you have two options :
- Entity Embeddings
- One Hot Vector
For a column with 145 values, I would use one hot encoding and Embedding for ~3k values. This decision might change depending on overall number of features.
Embeddings map feature values into a 1D vector so that model knows NYC, Paris, London are similar cities in one aspect (size) and very different in other aspects. So, instead of using ~3k column of features, model will have ~50 columns of vector representation.
Articles that explain Embeddings :
An Overview of Categorical Input Handling for Neural Networks
On learning embeddings for categorical data using Keras
Google Developers > Machine Learning > Embeddings: Categorical Input Data
Exploring Embeddings for Categorical Variables with Keras by Florian Teschner
edited Apr 8 at 15:10
answered Apr 8 at 12:05
Shamit VermaShamit Verma
1,6891414
1,6891414
add a comment |
add a comment |
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48875%2fhow-to-handle-columns-with-categorical-data-and-many-unique-values%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown