Are stably rational surfaces all rational?Del pezzo surfaces in positive characteristicNumerically negative exceptional divisor on a surface.Universal property of blowing downStabilisers of group actionsAre stably birational varieties birational?Methods of showing a variety is stably rationalConic bundles on quartic del Pezzo surfacesPurely inseparable $k$-rational dominant maps between an absolutely irreducible $k$-surface and $mathbbP^2$Is an open subscheme of a rationally connected variety, rationally connected?Is there an odd degree unirational parametrization of a cubic threefold?

Are stably rational surfaces all rational?


Del pezzo surfaces in positive characteristicNumerically negative exceptional divisor on a surface.Universal property of blowing downStabilisers of group actionsAre stably birational varieties birational?Methods of showing a variety is stably rationalConic bundles on quartic del Pezzo surfacesPurely inseparable $k$-rational dominant maps between an absolutely irreducible $k$-surface and $mathbbP^2$Is an open subscheme of a rationally connected variety, rationally connected?Is there an odd degree unirational parametrization of a cubic threefold?













9












$begingroup$


Let $X$ be an irreducible surface such that $X times mathbbP^1$ is rational. Is it true that $X$ is rational?



If the field is not algebraically closed, the answer is no in general (see A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc et Sir Peter Swinnerton-Dyer, Variétés stablement rationnelles non rationnelles, Ann. of Math. 121(1985) 283–318.).



If the field is algebraically closed of characteristic zero, the answer is yes.



What happens when the field is algebraically closed, of positive characteristic?



(one could ask the same for simply rationally connected surfaces).










share|cite|improve this question











$endgroup$











  • $begingroup$
    I imagine that this is a simple application of Castelnuovo's criterion, which is valid in all characteristics.
    $endgroup$
    – Daniel Loughran
    Mar 19 at 9:41






  • 2




    $begingroup$
    At least to me, the question does not exactly fit with the title. The question "are stably rational surfaces rational" is rather whether $XtimesmathbfP^n$ rational (for some $n$) implies $X$ rational?
    $endgroup$
    – YCor
    Mar 19 at 10:19
















9












$begingroup$


Let $X$ be an irreducible surface such that $X times mathbbP^1$ is rational. Is it true that $X$ is rational?



If the field is not algebraically closed, the answer is no in general (see A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc et Sir Peter Swinnerton-Dyer, Variétés stablement rationnelles non rationnelles, Ann. of Math. 121(1985) 283–318.).



If the field is algebraically closed of characteristic zero, the answer is yes.



What happens when the field is algebraically closed, of positive characteristic?



(one could ask the same for simply rationally connected surfaces).










share|cite|improve this question











$endgroup$











  • $begingroup$
    I imagine that this is a simple application of Castelnuovo's criterion, which is valid in all characteristics.
    $endgroup$
    – Daniel Loughran
    Mar 19 at 9:41






  • 2




    $begingroup$
    At least to me, the question does not exactly fit with the title. The question "are stably rational surfaces rational" is rather whether $XtimesmathbfP^n$ rational (for some $n$) implies $X$ rational?
    $endgroup$
    – YCor
    Mar 19 at 10:19














9












9








9





$begingroup$


Let $X$ be an irreducible surface such that $X times mathbbP^1$ is rational. Is it true that $X$ is rational?



If the field is not algebraically closed, the answer is no in general (see A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc et Sir Peter Swinnerton-Dyer, Variétés stablement rationnelles non rationnelles, Ann. of Math. 121(1985) 283–318.).



If the field is algebraically closed of characteristic zero, the answer is yes.



What happens when the field is algebraically closed, of positive characteristic?



(one could ask the same for simply rationally connected surfaces).










share|cite|improve this question











$endgroup$




Let $X$ be an irreducible surface such that $X times mathbbP^1$ is rational. Is it true that $X$ is rational?



If the field is not algebraically closed, the answer is no in general (see A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc et Sir Peter Swinnerton-Dyer, Variétés stablement rationnelles non rationnelles, Ann. of Math. 121(1985) 283–318.).



If the field is algebraically closed of characteristic zero, the answer is yes.



What happens when the field is algebraically closed, of positive characteristic?



(one could ask the same for simply rationally connected surfaces).







ag.algebraic-geometry birational-geometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 19 at 8:34







Jérémy Blanc

















asked Mar 19 at 8:21









Jérémy BlancJérémy Blanc

4,19411536




4,19411536











  • $begingroup$
    I imagine that this is a simple application of Castelnuovo's criterion, which is valid in all characteristics.
    $endgroup$
    – Daniel Loughran
    Mar 19 at 9:41






  • 2




    $begingroup$
    At least to me, the question does not exactly fit with the title. The question "are stably rational surfaces rational" is rather whether $XtimesmathbfP^n$ rational (for some $n$) implies $X$ rational?
    $endgroup$
    – YCor
    Mar 19 at 10:19

















  • $begingroup$
    I imagine that this is a simple application of Castelnuovo's criterion, which is valid in all characteristics.
    $endgroup$
    – Daniel Loughran
    Mar 19 at 9:41






  • 2




    $begingroup$
    At least to me, the question does not exactly fit with the title. The question "are stably rational surfaces rational" is rather whether $XtimesmathbfP^n$ rational (for some $n$) implies $X$ rational?
    $endgroup$
    – YCor
    Mar 19 at 10:19
















$begingroup$
I imagine that this is a simple application of Castelnuovo's criterion, which is valid in all characteristics.
$endgroup$
– Daniel Loughran
Mar 19 at 9:41




$begingroup$
I imagine that this is a simple application of Castelnuovo's criterion, which is valid in all characteristics.
$endgroup$
– Daniel Loughran
Mar 19 at 9:41




2




2




$begingroup$
At least to me, the question does not exactly fit with the title. The question "are stably rational surfaces rational" is rather whether $XtimesmathbfP^n$ rational (for some $n$) implies $X$ rational?
$endgroup$
– YCor
Mar 19 at 10:19





$begingroup$
At least to me, the question does not exactly fit with the title. The question "are stably rational surfaces rational" is rather whether $XtimesmathbfP^n$ rational (for some $n$) implies $X$ rational?
$endgroup$
– YCor
Mar 19 at 10:19











1 Answer
1






active

oldest

votes


















12












$begingroup$

The result is true in all characteristics. See O. Zariski, Illinois J. Math. 2(1958), 303-315.






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325752%2fare-stably-rational-surfaces-all-rational%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    12












    $begingroup$

    The result is true in all characteristics. See O. Zariski, Illinois J. Math. 2(1958), 303-315.






    share|cite|improve this answer









    $endgroup$

















      12












      $begingroup$

      The result is true in all characteristics. See O. Zariski, Illinois J. Math. 2(1958), 303-315.






      share|cite|improve this answer









      $endgroup$















        12












        12








        12





        $begingroup$

        The result is true in all characteristics. See O. Zariski, Illinois J. Math. 2(1958), 303-315.






        share|cite|improve this answer









        $endgroup$



        The result is true in all characteristics. See O. Zariski, Illinois J. Math. 2(1958), 303-315.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 19 at 9:14









        Laurent Moret-BaillyLaurent Moret-Bailly

        14.5k14769




        14.5k14769



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325752%2fare-stably-rational-surfaces-all-rational%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

            Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

            Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?