ImportError: cannot import name 'StanfordCoreNLPParser'Name Entity Linking with Naive Bayes ClassifierHow to detect product name from the bill text?Name Tagger in Stanford NLPGiven paper name get the abstractImport Error: cannot import name 'cv2'Tensorflow regression predicting 1 for all inputsCannot install package: dlxHow to extract name of objects from technical description (NLP)Feature name extraction directly from datasetFuzzy name and nickname match
Why do only some White Walkers shatter into ice chips?
Find the cheapest shipping option based on item weight
Manager is threatening to grade me poorly if I don't complete the project
Nominativ or Akkusativ
I have a unique character that I'm having a problem writing. He's a virus!
Have I damaged my car by attempting to reverse with hand/park brake up?
Homotopy limit over a diagram of nullhomotopic maps
What was Bran's plan to kill the Night King?
Multiple SQL versions with Docker
PN junction band gap - equal across all devices?
29ER Road Tire?
Should homeowners insurance cover the cost of the home?
Could the black hole photo be a gravastar?
How can I get a job without pushing my family's income into a higher tax bracket?
Why is Arya visibly scared in the library in Game of Thrones S8E3?
Didn't attend field-specific conferences during my PhD; how much of a disadvantage is it?
How can I get people to remember my character's gender?
UK Bank Holidays
My rubber roof has developed a leak. Can it be fixed?
How do LIGO and VIRGO know that a gravitational wave has its origin in a neutron star or a black hole?
Introducing Gladys, an intrepid globetrotter
What is the most remote airport from the center of the city it supposedly serves?
Longest ringing/resonating object
Where can I go to avoid planes overhead?
ImportError: cannot import name 'StanfordCoreNLPParser'
Name Entity Linking with Naive Bayes ClassifierHow to detect product name from the bill text?Name Tagger in Stanford NLPGiven paper name get the abstractImport Error: cannot import name 'cv2'Tensorflow regression predicting 1 for all inputsCannot install package: dlxHow to extract name of objects from technical description (NLP)Feature name extraction directly from datasetFuzzy name and nickname match
$begingroup$
I've been trying to extract subject-predicate-object triples from sentences and found this awesome API that did just that. However, when it was written, it used the StanfordParser
(from nltk.parse import stanford, stanford.StanfordParser
), which is now defunct.
Instead, what is to be used now is the StanfordCoreNLPParser
. Is this the right way to import it?
from nltk.parse.corenlp import StanfordCoreNLPParser
Anyways, I am trying to modify it rdf_triple.py
file (found here) to now use the new StanfordCoreNLPParser
, while keeping all the functionality intact.
My code is below:
from nltk.parse import stanford
import os, sys
import operator
from nltk.parse.corenlp import StanfordCoreNLPParser
# java_path = r"C:Program FilesJavajdk1.8.0_31binjava.exe"
# os.environ['JAVAHOME'] = java_path
os.environ['STANFORD_PARSER'] = r'/path/stanford-parser-full-2018-02-27'
os.environ['STANFORD_MODELS'] = r'/path/stanford-parser-full-2018-02-27'
# the RDF function starts here, the problems with the code are
# above this line, I think
class RDF_Triple():
class RDF_SOP():
def __init__(self, name, pos=''):
self.name = name
self.word = ''
self.parent = ''
self.grandparent = ''
self.depth = ''
self.predicate_list = []
self.predicate_sibings = []
self.pos = pos
self.attr = []
self.attr_trees = []
def __init__(self, sentence):
self.sentence = sentence
self.clear_data()
def clear_data(self):
self.parser = nltk.parse.corenlp.StanfordCoreNLPParser(
path_to_jar='/path/stanford-corenlp-3.9.1-models.jar',
path_to_models_jar='/path/stanford-corenlp-3.9.1-models.jar')
# UPDATE THIS PARSER!!!!
self.first_NP = ''
self.first_VP = ''
self.parse_tree = None
self.subject = RDF_Triple.RDF_SOP('subject')
self.predicate = RDF_Triple.RDF_SOP('predicate', 'VB')
self.Object = RDF_Triple.RDF_SOP('object')
def find_NP(self, t):
try:
t.label()
except AttributeError:
pass
else:
# Now we know that t.node is defined
if t.label() == 'NP':
if self.first_NP == '':
self.first_NP = t
elif t.label() == 'VP':
if self.first_VP == '':
self.first_VP = t
for child in t:
self.find_NP(child)
def find_subject(self, t, parent=None, grandparent=None):
if self.subject.word != '':
return
try:
t.label()
except AttributeError:
pass
else:
# Now we know that t.node is defined
if t.label()[:2] == 'NN':
if self.subject.word == '':
self.subject.word = t.leaves()[0]
self.subject.pos = t.label()
self.subject.parent = parent
self.subject.grandparent = grandparent
else:
for child in t:
self.find_subject(child, parent=t, grandparent=parent)
def find_predicate(self, t, parent=None, grandparent=None, depth=0):
try:
t.label()
except AttributeError:
pass
else:
if t.label()[:2] == 'VB':
self.predicate.predicate_list.append((t.leaves()[0], depth, parent, grandparent))
for child in t:
self.find_predicate(child, parent=t, grandparent=parent, depth=depth+1)
def find_deepest_predicate(self):
if not self.predicate.predicate_list:
return '','','',''
return max(self.predicate.predicate_list, key=operator.itemgetter(1))
def extract_word_and_pos(self, t, depth=0, words=[]):
try:
t.label()
except AttributeError:
# print t
# print 'error', t
pass
else:
# Now we know that t.node is defined
if t.height() == 2:
# self.word_pos_holder.append((t.label(), t.leaves()[0]))
words.append((t.leaves()[0], t.label()))
for child in t:
self.extract_word_and_pos(child, depth+1, words)
return words
def print_tree(self, t, depth=0):
try:
t.label()
except AttributeError:
print(t)
# print 'error', t
pass
else:
# Now we know that t.node is defined
print('(')#, t.label(), t.leaves()[0]
for child in t:
self.print_tree(child, depth+1)
print(') ')
def find_object(self):
for t in self.predicate.parent:
if self.Object.word == '':
self.find_object_NP_PP(t, t.label(), self.predicate.parent, self.predicate.grandparent)
def find_object_NP_PP(self, t, phrase_type, parent=None, grandparent=None):
'''
finds the object given its a NP or PP or ADJP
'''
if self.Object.word != '':
return
try:
t.label()
except AttributeError:
pass
else:
# Now we know that t.node is defined
if t.label()[:2] == 'NN' and phrase_type in ['NP', 'PP']:
if self.Object.word == '':
self.Object.word = t.leaves()[0]
self.Object.pos = t.label()
self.Object.parent = parent
self.Object.grandparent = grandparent
elif t.label()[:2] == 'JJ' and phrase_type == 'ADJP':
if self.Object.word == '':
self.Object.word = t.leaves()[0]
self.Object.pos = t.label()
self.Object.parent = parent
self.Object.grandparent = grandparent
else:
for child in t:
self.find_object_NP_PP(child, phrase_type, parent=t, grandparent=parent)
def get_attributes(self, pos, sibling_tree, grandparent):
rdf_type_attr = []
if pos[:2] == 'JJ':
for item in sibling_tree:
if item.label()[:2] == 'RB':
rdf_type_attr.append((item.leaves()[0], item.label()))
else:
if pos[:2] == 'NN':
for item in sibling_tree:
if item.label()[:2] in ['DT', 'PR', 'PO', 'JJ', 'CD']:
rdf_type_attr.append((item.leaves()[0], item.label()))
if item.label() in ['QP', 'NP']:
#append a tree
rdf_type_attr.append(item, item.label())
elif pos[:2] == 'VB':
for item in sibling_tree:
if item.label()[:2] == 'AD':
rdf_type_attr.append((item, item.label()))
if grandparent:
if pos[:2] in ['NN', 'JJ']:
for uncle in grandparent:
if uncle.label() == 'PP':
rdf_type_attr.append((uncle, uncle.label()))
elif pos[:2] == 'VB':
for uncle in grandparent:
if uncle.label()[:2] == 'VB':
rdf_type_attr.append((uncle, uncle.label()))
return self.attr_to_words(rdf_type_attr)
def attr_to_words(self, attr):
new_attr_words = []
new_attr_trees = []
for tup in attr:
if type(tup[0]) != str:
if tup[0].height() == 2:
new_attr_words.append((tup[0].leaves()[0], tup[0].label()))
else:
# new_attr_words.extend(self.extract_word_and_pos(tup[0]))
new_attr_trees.append(tup[0].unicode_repr())
else:
new_attr_words.append(tup)
return new_attr_words, new_attr_trees
def jsonify_rdf(self):
return 'sentence':self.sentence,
'parse_tree':self.parse_tree.unicode_repr(),
'predicate':'word':self.predicate.word, 'POS':self.predicate.pos,
'Word Attributes':self.predicate.attr, 'Tree Attributes':self.predicate.attr_trees,
'subject':'word':self.subject.word, 'POS':self.subject.pos,
'Word Attributes':self.subject.attr, 'Tree Attributes':self.subject.attr_trees,
'object':'word':self.Object.word, 'POS':self.Object.pos,
'Word Attributes':self.Object.attr, 'Tree Attributes':self.Object.attr_trees,
'rdf':[self.subject.word, self.predicate.word, self.Object.word]
def main(self):
self.clear_data()
self.parse_tree = self.parser.raw_parse(self.sentence)[0]
self.find_NP(self.parse_tree)
self.find_subject(self.first_NP)
self.find_predicate(self.first_VP)
if self.subject.word == '' and self.first_NP != '':
self.subject.word = self.first_NP.leaves()[0]
self.predicate.word, self.predicate.depth, self.predicate.parent, self.predicate.grandparent = self.find_deepest_predicate()
self.find_object()
self.subject.attr, self.subject.attr_trees = self.get_attributes(self.subject.pos, self.subject.parent, self.subject.grandparent)
self.predicate.attr, self.predicate.attr_trees = self.get_attributes(self.predicate.pos, self.predicate.parent, self.predicate.grandparent)
self.Object.attr, self.Object.attr_trees = self.get_attributes(self.Object.pos, self.Object.parent, self.Object.grandparent)
self.answer = self.jsonify_rdf()
# =============================================================================
# if __name__ == '__main__':
# try:
# sentence = sys.argv[1]
# sentence = 'A rare black squirrel has become a regular visitor to a suburban garden'
# except IndexError:
# print("Enter in your sentence")
# sentence = 'A rare black squirrel has become a regular visitor to a suburban garden'
# print("Heres an example")
# print(sentence)
#
# # sentence = 'The boy dunked the basketball'
# sentence = 'They also made the substance able to last longer in the bloodstream, which led to more stable blood sugar levels and less frequent injections.'
# sentence = 'A rare black squirrel has become a regular visitor to a suburban garden'
# rdf = RDF_Triple(sentence)
# rdf.main()
#
# ans = rdf.answer
# print(ans)
# =============================================================================
What happens when I run my code is I get the error:
ImportError: cannot import name 'StanfordCoreNLPParser'.
Does anyone have an idea how to fix this?
machine-learning python nlp stanford-nlp
$endgroup$
add a comment |
$begingroup$
I've been trying to extract subject-predicate-object triples from sentences and found this awesome API that did just that. However, when it was written, it used the StanfordParser
(from nltk.parse import stanford, stanford.StanfordParser
), which is now defunct.
Instead, what is to be used now is the StanfordCoreNLPParser
. Is this the right way to import it?
from nltk.parse.corenlp import StanfordCoreNLPParser
Anyways, I am trying to modify it rdf_triple.py
file (found here) to now use the new StanfordCoreNLPParser
, while keeping all the functionality intact.
My code is below:
from nltk.parse import stanford
import os, sys
import operator
from nltk.parse.corenlp import StanfordCoreNLPParser
# java_path = r"C:Program FilesJavajdk1.8.0_31binjava.exe"
# os.environ['JAVAHOME'] = java_path
os.environ['STANFORD_PARSER'] = r'/path/stanford-parser-full-2018-02-27'
os.environ['STANFORD_MODELS'] = r'/path/stanford-parser-full-2018-02-27'
# the RDF function starts here, the problems with the code are
# above this line, I think
class RDF_Triple():
class RDF_SOP():
def __init__(self, name, pos=''):
self.name = name
self.word = ''
self.parent = ''
self.grandparent = ''
self.depth = ''
self.predicate_list = []
self.predicate_sibings = []
self.pos = pos
self.attr = []
self.attr_trees = []
def __init__(self, sentence):
self.sentence = sentence
self.clear_data()
def clear_data(self):
self.parser = nltk.parse.corenlp.StanfordCoreNLPParser(
path_to_jar='/path/stanford-corenlp-3.9.1-models.jar',
path_to_models_jar='/path/stanford-corenlp-3.9.1-models.jar')
# UPDATE THIS PARSER!!!!
self.first_NP = ''
self.first_VP = ''
self.parse_tree = None
self.subject = RDF_Triple.RDF_SOP('subject')
self.predicate = RDF_Triple.RDF_SOP('predicate', 'VB')
self.Object = RDF_Triple.RDF_SOP('object')
def find_NP(self, t):
try:
t.label()
except AttributeError:
pass
else:
# Now we know that t.node is defined
if t.label() == 'NP':
if self.first_NP == '':
self.first_NP = t
elif t.label() == 'VP':
if self.first_VP == '':
self.first_VP = t
for child in t:
self.find_NP(child)
def find_subject(self, t, parent=None, grandparent=None):
if self.subject.word != '':
return
try:
t.label()
except AttributeError:
pass
else:
# Now we know that t.node is defined
if t.label()[:2] == 'NN':
if self.subject.word == '':
self.subject.word = t.leaves()[0]
self.subject.pos = t.label()
self.subject.parent = parent
self.subject.grandparent = grandparent
else:
for child in t:
self.find_subject(child, parent=t, grandparent=parent)
def find_predicate(self, t, parent=None, grandparent=None, depth=0):
try:
t.label()
except AttributeError:
pass
else:
if t.label()[:2] == 'VB':
self.predicate.predicate_list.append((t.leaves()[0], depth, parent, grandparent))
for child in t:
self.find_predicate(child, parent=t, grandparent=parent, depth=depth+1)
def find_deepest_predicate(self):
if not self.predicate.predicate_list:
return '','','',''
return max(self.predicate.predicate_list, key=operator.itemgetter(1))
def extract_word_and_pos(self, t, depth=0, words=[]):
try:
t.label()
except AttributeError:
# print t
# print 'error', t
pass
else:
# Now we know that t.node is defined
if t.height() == 2:
# self.word_pos_holder.append((t.label(), t.leaves()[0]))
words.append((t.leaves()[0], t.label()))
for child in t:
self.extract_word_and_pos(child, depth+1, words)
return words
def print_tree(self, t, depth=0):
try:
t.label()
except AttributeError:
print(t)
# print 'error', t
pass
else:
# Now we know that t.node is defined
print('(')#, t.label(), t.leaves()[0]
for child in t:
self.print_tree(child, depth+1)
print(') ')
def find_object(self):
for t in self.predicate.parent:
if self.Object.word == '':
self.find_object_NP_PP(t, t.label(), self.predicate.parent, self.predicate.grandparent)
def find_object_NP_PP(self, t, phrase_type, parent=None, grandparent=None):
'''
finds the object given its a NP or PP or ADJP
'''
if self.Object.word != '':
return
try:
t.label()
except AttributeError:
pass
else:
# Now we know that t.node is defined
if t.label()[:2] == 'NN' and phrase_type in ['NP', 'PP']:
if self.Object.word == '':
self.Object.word = t.leaves()[0]
self.Object.pos = t.label()
self.Object.parent = parent
self.Object.grandparent = grandparent
elif t.label()[:2] == 'JJ' and phrase_type == 'ADJP':
if self.Object.word == '':
self.Object.word = t.leaves()[0]
self.Object.pos = t.label()
self.Object.parent = parent
self.Object.grandparent = grandparent
else:
for child in t:
self.find_object_NP_PP(child, phrase_type, parent=t, grandparent=parent)
def get_attributes(self, pos, sibling_tree, grandparent):
rdf_type_attr = []
if pos[:2] == 'JJ':
for item in sibling_tree:
if item.label()[:2] == 'RB':
rdf_type_attr.append((item.leaves()[0], item.label()))
else:
if pos[:2] == 'NN':
for item in sibling_tree:
if item.label()[:2] in ['DT', 'PR', 'PO', 'JJ', 'CD']:
rdf_type_attr.append((item.leaves()[0], item.label()))
if item.label() in ['QP', 'NP']:
#append a tree
rdf_type_attr.append(item, item.label())
elif pos[:2] == 'VB':
for item in sibling_tree:
if item.label()[:2] == 'AD':
rdf_type_attr.append((item, item.label()))
if grandparent:
if pos[:2] in ['NN', 'JJ']:
for uncle in grandparent:
if uncle.label() == 'PP':
rdf_type_attr.append((uncle, uncle.label()))
elif pos[:2] == 'VB':
for uncle in grandparent:
if uncle.label()[:2] == 'VB':
rdf_type_attr.append((uncle, uncle.label()))
return self.attr_to_words(rdf_type_attr)
def attr_to_words(self, attr):
new_attr_words = []
new_attr_trees = []
for tup in attr:
if type(tup[0]) != str:
if tup[0].height() == 2:
new_attr_words.append((tup[0].leaves()[0], tup[0].label()))
else:
# new_attr_words.extend(self.extract_word_and_pos(tup[0]))
new_attr_trees.append(tup[0].unicode_repr())
else:
new_attr_words.append(tup)
return new_attr_words, new_attr_trees
def jsonify_rdf(self):
return 'sentence':self.sentence,
'parse_tree':self.parse_tree.unicode_repr(),
'predicate':'word':self.predicate.word, 'POS':self.predicate.pos,
'Word Attributes':self.predicate.attr, 'Tree Attributes':self.predicate.attr_trees,
'subject':'word':self.subject.word, 'POS':self.subject.pos,
'Word Attributes':self.subject.attr, 'Tree Attributes':self.subject.attr_trees,
'object':'word':self.Object.word, 'POS':self.Object.pos,
'Word Attributes':self.Object.attr, 'Tree Attributes':self.Object.attr_trees,
'rdf':[self.subject.word, self.predicate.word, self.Object.word]
def main(self):
self.clear_data()
self.parse_tree = self.parser.raw_parse(self.sentence)[0]
self.find_NP(self.parse_tree)
self.find_subject(self.first_NP)
self.find_predicate(self.first_VP)
if self.subject.word == '' and self.first_NP != '':
self.subject.word = self.first_NP.leaves()[0]
self.predicate.word, self.predicate.depth, self.predicate.parent, self.predicate.grandparent = self.find_deepest_predicate()
self.find_object()
self.subject.attr, self.subject.attr_trees = self.get_attributes(self.subject.pos, self.subject.parent, self.subject.grandparent)
self.predicate.attr, self.predicate.attr_trees = self.get_attributes(self.predicate.pos, self.predicate.parent, self.predicate.grandparent)
self.Object.attr, self.Object.attr_trees = self.get_attributes(self.Object.pos, self.Object.parent, self.Object.grandparent)
self.answer = self.jsonify_rdf()
# =============================================================================
# if __name__ == '__main__':
# try:
# sentence = sys.argv[1]
# sentence = 'A rare black squirrel has become a regular visitor to a suburban garden'
# except IndexError:
# print("Enter in your sentence")
# sentence = 'A rare black squirrel has become a regular visitor to a suburban garden'
# print("Heres an example")
# print(sentence)
#
# # sentence = 'The boy dunked the basketball'
# sentence = 'They also made the substance able to last longer in the bloodstream, which led to more stable blood sugar levels and less frequent injections.'
# sentence = 'A rare black squirrel has become a regular visitor to a suburban garden'
# rdf = RDF_Triple(sentence)
# rdf.main()
#
# ans = rdf.answer
# print(ans)
# =============================================================================
What happens when I run my code is I get the error:
ImportError: cannot import name 'StanfordCoreNLPParser'.
Does anyone have an idea how to fix this?
machine-learning python nlp stanford-nlp
$endgroup$
$begingroup$
datascience.stackexchange.com/help/merging-accounts
$endgroup$
– Stephen Rauch♦
Aug 10 '18 at 21:53
add a comment |
$begingroup$
I've been trying to extract subject-predicate-object triples from sentences and found this awesome API that did just that. However, when it was written, it used the StanfordParser
(from nltk.parse import stanford, stanford.StanfordParser
), which is now defunct.
Instead, what is to be used now is the StanfordCoreNLPParser
. Is this the right way to import it?
from nltk.parse.corenlp import StanfordCoreNLPParser
Anyways, I am trying to modify it rdf_triple.py
file (found here) to now use the new StanfordCoreNLPParser
, while keeping all the functionality intact.
My code is below:
from nltk.parse import stanford
import os, sys
import operator
from nltk.parse.corenlp import StanfordCoreNLPParser
# java_path = r"C:Program FilesJavajdk1.8.0_31binjava.exe"
# os.environ['JAVAHOME'] = java_path
os.environ['STANFORD_PARSER'] = r'/path/stanford-parser-full-2018-02-27'
os.environ['STANFORD_MODELS'] = r'/path/stanford-parser-full-2018-02-27'
# the RDF function starts here, the problems with the code are
# above this line, I think
class RDF_Triple():
class RDF_SOP():
def __init__(self, name, pos=''):
self.name = name
self.word = ''
self.parent = ''
self.grandparent = ''
self.depth = ''
self.predicate_list = []
self.predicate_sibings = []
self.pos = pos
self.attr = []
self.attr_trees = []
def __init__(self, sentence):
self.sentence = sentence
self.clear_data()
def clear_data(self):
self.parser = nltk.parse.corenlp.StanfordCoreNLPParser(
path_to_jar='/path/stanford-corenlp-3.9.1-models.jar',
path_to_models_jar='/path/stanford-corenlp-3.9.1-models.jar')
# UPDATE THIS PARSER!!!!
self.first_NP = ''
self.first_VP = ''
self.parse_tree = None
self.subject = RDF_Triple.RDF_SOP('subject')
self.predicate = RDF_Triple.RDF_SOP('predicate', 'VB')
self.Object = RDF_Triple.RDF_SOP('object')
def find_NP(self, t):
try:
t.label()
except AttributeError:
pass
else:
# Now we know that t.node is defined
if t.label() == 'NP':
if self.first_NP == '':
self.first_NP = t
elif t.label() == 'VP':
if self.first_VP == '':
self.first_VP = t
for child in t:
self.find_NP(child)
def find_subject(self, t, parent=None, grandparent=None):
if self.subject.word != '':
return
try:
t.label()
except AttributeError:
pass
else:
# Now we know that t.node is defined
if t.label()[:2] == 'NN':
if self.subject.word == '':
self.subject.word = t.leaves()[0]
self.subject.pos = t.label()
self.subject.parent = parent
self.subject.grandparent = grandparent
else:
for child in t:
self.find_subject(child, parent=t, grandparent=parent)
def find_predicate(self, t, parent=None, grandparent=None, depth=0):
try:
t.label()
except AttributeError:
pass
else:
if t.label()[:2] == 'VB':
self.predicate.predicate_list.append((t.leaves()[0], depth, parent, grandparent))
for child in t:
self.find_predicate(child, parent=t, grandparent=parent, depth=depth+1)
def find_deepest_predicate(self):
if not self.predicate.predicate_list:
return '','','',''
return max(self.predicate.predicate_list, key=operator.itemgetter(1))
def extract_word_and_pos(self, t, depth=0, words=[]):
try:
t.label()
except AttributeError:
# print t
# print 'error', t
pass
else:
# Now we know that t.node is defined
if t.height() == 2:
# self.word_pos_holder.append((t.label(), t.leaves()[0]))
words.append((t.leaves()[0], t.label()))
for child in t:
self.extract_word_and_pos(child, depth+1, words)
return words
def print_tree(self, t, depth=0):
try:
t.label()
except AttributeError:
print(t)
# print 'error', t
pass
else:
# Now we know that t.node is defined
print('(')#, t.label(), t.leaves()[0]
for child in t:
self.print_tree(child, depth+1)
print(') ')
def find_object(self):
for t in self.predicate.parent:
if self.Object.word == '':
self.find_object_NP_PP(t, t.label(), self.predicate.parent, self.predicate.grandparent)
def find_object_NP_PP(self, t, phrase_type, parent=None, grandparent=None):
'''
finds the object given its a NP or PP or ADJP
'''
if self.Object.word != '':
return
try:
t.label()
except AttributeError:
pass
else:
# Now we know that t.node is defined
if t.label()[:2] == 'NN' and phrase_type in ['NP', 'PP']:
if self.Object.word == '':
self.Object.word = t.leaves()[0]
self.Object.pos = t.label()
self.Object.parent = parent
self.Object.grandparent = grandparent
elif t.label()[:2] == 'JJ' and phrase_type == 'ADJP':
if self.Object.word == '':
self.Object.word = t.leaves()[0]
self.Object.pos = t.label()
self.Object.parent = parent
self.Object.grandparent = grandparent
else:
for child in t:
self.find_object_NP_PP(child, phrase_type, parent=t, grandparent=parent)
def get_attributes(self, pos, sibling_tree, grandparent):
rdf_type_attr = []
if pos[:2] == 'JJ':
for item in sibling_tree:
if item.label()[:2] == 'RB':
rdf_type_attr.append((item.leaves()[0], item.label()))
else:
if pos[:2] == 'NN':
for item in sibling_tree:
if item.label()[:2] in ['DT', 'PR', 'PO', 'JJ', 'CD']:
rdf_type_attr.append((item.leaves()[0], item.label()))
if item.label() in ['QP', 'NP']:
#append a tree
rdf_type_attr.append(item, item.label())
elif pos[:2] == 'VB':
for item in sibling_tree:
if item.label()[:2] == 'AD':
rdf_type_attr.append((item, item.label()))
if grandparent:
if pos[:2] in ['NN', 'JJ']:
for uncle in grandparent:
if uncle.label() == 'PP':
rdf_type_attr.append((uncle, uncle.label()))
elif pos[:2] == 'VB':
for uncle in grandparent:
if uncle.label()[:2] == 'VB':
rdf_type_attr.append((uncle, uncle.label()))
return self.attr_to_words(rdf_type_attr)
def attr_to_words(self, attr):
new_attr_words = []
new_attr_trees = []
for tup in attr:
if type(tup[0]) != str:
if tup[0].height() == 2:
new_attr_words.append((tup[0].leaves()[0], tup[0].label()))
else:
# new_attr_words.extend(self.extract_word_and_pos(tup[0]))
new_attr_trees.append(tup[0].unicode_repr())
else:
new_attr_words.append(tup)
return new_attr_words, new_attr_trees
def jsonify_rdf(self):
return 'sentence':self.sentence,
'parse_tree':self.parse_tree.unicode_repr(),
'predicate':'word':self.predicate.word, 'POS':self.predicate.pos,
'Word Attributes':self.predicate.attr, 'Tree Attributes':self.predicate.attr_trees,
'subject':'word':self.subject.word, 'POS':self.subject.pos,
'Word Attributes':self.subject.attr, 'Tree Attributes':self.subject.attr_trees,
'object':'word':self.Object.word, 'POS':self.Object.pos,
'Word Attributes':self.Object.attr, 'Tree Attributes':self.Object.attr_trees,
'rdf':[self.subject.word, self.predicate.word, self.Object.word]
def main(self):
self.clear_data()
self.parse_tree = self.parser.raw_parse(self.sentence)[0]
self.find_NP(self.parse_tree)
self.find_subject(self.first_NP)
self.find_predicate(self.first_VP)
if self.subject.word == '' and self.first_NP != '':
self.subject.word = self.first_NP.leaves()[0]
self.predicate.word, self.predicate.depth, self.predicate.parent, self.predicate.grandparent = self.find_deepest_predicate()
self.find_object()
self.subject.attr, self.subject.attr_trees = self.get_attributes(self.subject.pos, self.subject.parent, self.subject.grandparent)
self.predicate.attr, self.predicate.attr_trees = self.get_attributes(self.predicate.pos, self.predicate.parent, self.predicate.grandparent)
self.Object.attr, self.Object.attr_trees = self.get_attributes(self.Object.pos, self.Object.parent, self.Object.grandparent)
self.answer = self.jsonify_rdf()
# =============================================================================
# if __name__ == '__main__':
# try:
# sentence = sys.argv[1]
# sentence = 'A rare black squirrel has become a regular visitor to a suburban garden'
# except IndexError:
# print("Enter in your sentence")
# sentence = 'A rare black squirrel has become a regular visitor to a suburban garden'
# print("Heres an example")
# print(sentence)
#
# # sentence = 'The boy dunked the basketball'
# sentence = 'They also made the substance able to last longer in the bloodstream, which led to more stable blood sugar levels and less frequent injections.'
# sentence = 'A rare black squirrel has become a regular visitor to a suburban garden'
# rdf = RDF_Triple(sentence)
# rdf.main()
#
# ans = rdf.answer
# print(ans)
# =============================================================================
What happens when I run my code is I get the error:
ImportError: cannot import name 'StanfordCoreNLPParser'.
Does anyone have an idea how to fix this?
machine-learning python nlp stanford-nlp
$endgroup$
I've been trying to extract subject-predicate-object triples from sentences and found this awesome API that did just that. However, when it was written, it used the StanfordParser
(from nltk.parse import stanford, stanford.StanfordParser
), which is now defunct.
Instead, what is to be used now is the StanfordCoreNLPParser
. Is this the right way to import it?
from nltk.parse.corenlp import StanfordCoreNLPParser
Anyways, I am trying to modify it rdf_triple.py
file (found here) to now use the new StanfordCoreNLPParser
, while keeping all the functionality intact.
My code is below:
from nltk.parse import stanford
import os, sys
import operator
from nltk.parse.corenlp import StanfordCoreNLPParser
# java_path = r"C:Program FilesJavajdk1.8.0_31binjava.exe"
# os.environ['JAVAHOME'] = java_path
os.environ['STANFORD_PARSER'] = r'/path/stanford-parser-full-2018-02-27'
os.environ['STANFORD_MODELS'] = r'/path/stanford-parser-full-2018-02-27'
# the RDF function starts here, the problems with the code are
# above this line, I think
class RDF_Triple():
class RDF_SOP():
def __init__(self, name, pos=''):
self.name = name
self.word = ''
self.parent = ''
self.grandparent = ''
self.depth = ''
self.predicate_list = []
self.predicate_sibings = []
self.pos = pos
self.attr = []
self.attr_trees = []
def __init__(self, sentence):
self.sentence = sentence
self.clear_data()
def clear_data(self):
self.parser = nltk.parse.corenlp.StanfordCoreNLPParser(
path_to_jar='/path/stanford-corenlp-3.9.1-models.jar',
path_to_models_jar='/path/stanford-corenlp-3.9.1-models.jar')
# UPDATE THIS PARSER!!!!
self.first_NP = ''
self.first_VP = ''
self.parse_tree = None
self.subject = RDF_Triple.RDF_SOP('subject')
self.predicate = RDF_Triple.RDF_SOP('predicate', 'VB')
self.Object = RDF_Triple.RDF_SOP('object')
def find_NP(self, t):
try:
t.label()
except AttributeError:
pass
else:
# Now we know that t.node is defined
if t.label() == 'NP':
if self.first_NP == '':
self.first_NP = t
elif t.label() == 'VP':
if self.first_VP == '':
self.first_VP = t
for child in t:
self.find_NP(child)
def find_subject(self, t, parent=None, grandparent=None):
if self.subject.word != '':
return
try:
t.label()
except AttributeError:
pass
else:
# Now we know that t.node is defined
if t.label()[:2] == 'NN':
if self.subject.word == '':
self.subject.word = t.leaves()[0]
self.subject.pos = t.label()
self.subject.parent = parent
self.subject.grandparent = grandparent
else:
for child in t:
self.find_subject(child, parent=t, grandparent=parent)
def find_predicate(self, t, parent=None, grandparent=None, depth=0):
try:
t.label()
except AttributeError:
pass
else:
if t.label()[:2] == 'VB':
self.predicate.predicate_list.append((t.leaves()[0], depth, parent, grandparent))
for child in t:
self.find_predicate(child, parent=t, grandparent=parent, depth=depth+1)
def find_deepest_predicate(self):
if not self.predicate.predicate_list:
return '','','',''
return max(self.predicate.predicate_list, key=operator.itemgetter(1))
def extract_word_and_pos(self, t, depth=0, words=[]):
try:
t.label()
except AttributeError:
# print t
# print 'error', t
pass
else:
# Now we know that t.node is defined
if t.height() == 2:
# self.word_pos_holder.append((t.label(), t.leaves()[0]))
words.append((t.leaves()[0], t.label()))
for child in t:
self.extract_word_and_pos(child, depth+1, words)
return words
def print_tree(self, t, depth=0):
try:
t.label()
except AttributeError:
print(t)
# print 'error', t
pass
else:
# Now we know that t.node is defined
print('(')#, t.label(), t.leaves()[0]
for child in t:
self.print_tree(child, depth+1)
print(') ')
def find_object(self):
for t in self.predicate.parent:
if self.Object.word == '':
self.find_object_NP_PP(t, t.label(), self.predicate.parent, self.predicate.grandparent)
def find_object_NP_PP(self, t, phrase_type, parent=None, grandparent=None):
'''
finds the object given its a NP or PP or ADJP
'''
if self.Object.word != '':
return
try:
t.label()
except AttributeError:
pass
else:
# Now we know that t.node is defined
if t.label()[:2] == 'NN' and phrase_type in ['NP', 'PP']:
if self.Object.word == '':
self.Object.word = t.leaves()[0]
self.Object.pos = t.label()
self.Object.parent = parent
self.Object.grandparent = grandparent
elif t.label()[:2] == 'JJ' and phrase_type == 'ADJP':
if self.Object.word == '':
self.Object.word = t.leaves()[0]
self.Object.pos = t.label()
self.Object.parent = parent
self.Object.grandparent = grandparent
else:
for child in t:
self.find_object_NP_PP(child, phrase_type, parent=t, grandparent=parent)
def get_attributes(self, pos, sibling_tree, grandparent):
rdf_type_attr = []
if pos[:2] == 'JJ':
for item in sibling_tree:
if item.label()[:2] == 'RB':
rdf_type_attr.append((item.leaves()[0], item.label()))
else:
if pos[:2] == 'NN':
for item in sibling_tree:
if item.label()[:2] in ['DT', 'PR', 'PO', 'JJ', 'CD']:
rdf_type_attr.append((item.leaves()[0], item.label()))
if item.label() in ['QP', 'NP']:
#append a tree
rdf_type_attr.append(item, item.label())
elif pos[:2] == 'VB':
for item in sibling_tree:
if item.label()[:2] == 'AD':
rdf_type_attr.append((item, item.label()))
if grandparent:
if pos[:2] in ['NN', 'JJ']:
for uncle in grandparent:
if uncle.label() == 'PP':
rdf_type_attr.append((uncle, uncle.label()))
elif pos[:2] == 'VB':
for uncle in grandparent:
if uncle.label()[:2] == 'VB':
rdf_type_attr.append((uncle, uncle.label()))
return self.attr_to_words(rdf_type_attr)
def attr_to_words(self, attr):
new_attr_words = []
new_attr_trees = []
for tup in attr:
if type(tup[0]) != str:
if tup[0].height() == 2:
new_attr_words.append((tup[0].leaves()[0], tup[0].label()))
else:
# new_attr_words.extend(self.extract_word_and_pos(tup[0]))
new_attr_trees.append(tup[0].unicode_repr())
else:
new_attr_words.append(tup)
return new_attr_words, new_attr_trees
def jsonify_rdf(self):
return 'sentence':self.sentence,
'parse_tree':self.parse_tree.unicode_repr(),
'predicate':'word':self.predicate.word, 'POS':self.predicate.pos,
'Word Attributes':self.predicate.attr, 'Tree Attributes':self.predicate.attr_trees,
'subject':'word':self.subject.word, 'POS':self.subject.pos,
'Word Attributes':self.subject.attr, 'Tree Attributes':self.subject.attr_trees,
'object':'word':self.Object.word, 'POS':self.Object.pos,
'Word Attributes':self.Object.attr, 'Tree Attributes':self.Object.attr_trees,
'rdf':[self.subject.word, self.predicate.word, self.Object.word]
def main(self):
self.clear_data()
self.parse_tree = self.parser.raw_parse(self.sentence)[0]
self.find_NP(self.parse_tree)
self.find_subject(self.first_NP)
self.find_predicate(self.first_VP)
if self.subject.word == '' and self.first_NP != '':
self.subject.word = self.first_NP.leaves()[0]
self.predicate.word, self.predicate.depth, self.predicate.parent, self.predicate.grandparent = self.find_deepest_predicate()
self.find_object()
self.subject.attr, self.subject.attr_trees = self.get_attributes(self.subject.pos, self.subject.parent, self.subject.grandparent)
self.predicate.attr, self.predicate.attr_trees = self.get_attributes(self.predicate.pos, self.predicate.parent, self.predicate.grandparent)
self.Object.attr, self.Object.attr_trees = self.get_attributes(self.Object.pos, self.Object.parent, self.Object.grandparent)
self.answer = self.jsonify_rdf()
# =============================================================================
# if __name__ == '__main__':
# try:
# sentence = sys.argv[1]
# sentence = 'A rare black squirrel has become a regular visitor to a suburban garden'
# except IndexError:
# print("Enter in your sentence")
# sentence = 'A rare black squirrel has become a regular visitor to a suburban garden'
# print("Heres an example")
# print(sentence)
#
# # sentence = 'The boy dunked the basketball'
# sentence = 'They also made the substance able to last longer in the bloodstream, which led to more stable blood sugar levels and less frequent injections.'
# sentence = 'A rare black squirrel has become a regular visitor to a suburban garden'
# rdf = RDF_Triple(sentence)
# rdf.main()
#
# ans = rdf.answer
# print(ans)
# =============================================================================
What happens when I run my code is I get the error:
ImportError: cannot import name 'StanfordCoreNLPParser'.
Does anyone have an idea how to fix this?
machine-learning python nlp stanford-nlp
machine-learning python nlp stanford-nlp
edited Aug 10 '18 at 21:55
Stephen Rauch♦
1,53551330
1,53551330
asked Aug 10 '18 at 20:07
mathdeviantmathdeviant
61
61
$begingroup$
datascience.stackexchange.com/help/merging-accounts
$endgroup$
– Stephen Rauch♦
Aug 10 '18 at 21:53
add a comment |
$begingroup$
datascience.stackexchange.com/help/merging-accounts
$endgroup$
– Stephen Rauch♦
Aug 10 '18 at 21:53
$begingroup$
datascience.stackexchange.com/help/merging-accounts
$endgroup$
– Stephen Rauch♦
Aug 10 '18 at 21:53
$begingroup$
datascience.stackexchange.com/help/merging-accounts
$endgroup$
– Stephen Rauch♦
Aug 10 '18 at 21:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I do not know of anything called StanfordCoreNLPParser
. The stanfordcorenlp
package has StanfordCoreNLP
or StanfordParser
:
from stanfordcorenlp import StanfordCoreNLP, StanfordParser
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f36764%2fimporterror-cannot-import-name-stanfordcorenlpparser%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I do not know of anything called StanfordCoreNLPParser
. The stanfordcorenlp
package has StanfordCoreNLP
or StanfordParser
:
from stanfordcorenlp import StanfordCoreNLP, StanfordParser
$endgroup$
add a comment |
$begingroup$
I do not know of anything called StanfordCoreNLPParser
. The stanfordcorenlp
package has StanfordCoreNLP
or StanfordParser
:
from stanfordcorenlp import StanfordCoreNLP, StanfordParser
$endgroup$
add a comment |
$begingroup$
I do not know of anything called StanfordCoreNLPParser
. The stanfordcorenlp
package has StanfordCoreNLP
or StanfordParser
:
from stanfordcorenlp import StanfordCoreNLP, StanfordParser
$endgroup$
I do not know of anything called StanfordCoreNLPParser
. The stanfordcorenlp
package has StanfordCoreNLP
or StanfordParser
:
from stanfordcorenlp import StanfordCoreNLP, StanfordParser
answered Aug 12 '18 at 18:13
Brian SpieringBrian Spiering
4,3631129
4,3631129
add a comment |
add a comment |
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f36764%2fimporterror-cannot-import-name-stanfordcorenlpparser%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
datascience.stackexchange.com/help/merging-accounts
$endgroup$
– Stephen Rauch♦
Aug 10 '18 at 21:53