Understanding the implication of what “well-defined” means for the operation in quotient groupProve $+$ and $times$ are well-defined on quotient ringsFor $Q$ the quaternion group, is $Q/Z(Q)$ a group? For which operation?Is the Axiom of Choice implicitly used when defining a binary operation on a quotient object?Why can quotient groups only be defined for subgroups?Convincing normal subgroup proof?Coset multiplication giving a well defined binary operationShow that the group operation is well definedWhat does well-defined mean? In general or in this context (quotient group)Quotient group is well-definedClosed under an operation which is not well-defined?Showing quotient group operations are well defined
Is the set of non invertible matrices simply connected? What are their homotopy and homology groups?
Could the black hole photo be a gravastar?
Field lines in a parallel plate capacitor with border effect
Can there be a single technologically advanced nation, in a continent full of non-technologically advanced nations?
How does this change to the opportunity attack rule impact combat?
Why is "breaking the mould" positively connoted?
Where can I go to avoid planes overhead?
Should I just decline the job offer?
What is the solution to this metapuzzle from a university puzzling column?
Why wasn't the Night King naked in S08E03?
Something that can be activated/enabled
My advisor talks about me to his colleague
How to increase the size of the cursor in Lubuntu 19.04?
How to use dependency injection and avoid temporal coupling?
Building a list of products from the elements in another list
ZSPL language, anyone heard of it?
Why is Arya visibly scared in the library in Game of Thrones S8E3?
What is a smasher?
I need a disease
Is interpreting a pointer to first member as the class itself well defined?
Didn't attend field-specific conferences during my PhD; how much of a disadvantage is it?
Controlled Hadamard gate in ZX-calculus
What is the closest airport to the center of the city it serves?
PN junction band gap - equal across all devices?
Understanding the implication of what “well-defined” means for the operation in quotient group
Prove $+$ and $times$ are well-defined on quotient ringsFor $Q$ the quaternion group, is $Q/Z(Q)$ a group? For which operation?Is the Axiom of Choice implicitly used when defining a binary operation on a quotient object?Why can quotient groups only be defined for subgroups?Convincing normal subgroup proof?Coset multiplication giving a well defined binary operationShow that the group operation is well definedWhat does well-defined mean? In general or in this context (quotient group)Quotient group is well-definedClosed under an operation which is not well-defined?Showing quotient group operations are well defined
$begingroup$
I want to get an intuitive idea of the operation being "well-defined" for quotient groups. So, let's say I have a group $G$, with subgroup $H$, and let's say my set of left cosets is $G/K$. My lecture note says this: If $H$ is normal, then $G/H$ is a group under binary operation $aH circ bH = (ab)H$. So let's say I am asked whether $G/H$ forms a group where $H$ is not normal, and I have already determined that. My professor referred to the following which I am not sure if I totally understand:
Show that there are $a, b, a', b' in G$ such that $ aH = a'H$ and $bH = b'H$ but $aH circ bH = (ab)H neq a'H circ b'H = (a'b')H$, and you are done, and I did what she suggested, but I am not sure what is going on. So,
$1.$ What did I exactly show by proving what my professor suggested?
$2.$ In general, is it a strategy that every time you have to prove $G/H$ does not form a group for a non-normal $H$, you show that the operation is not well-defined?
Also, a quick google search also showed me that the theorem that talks about $G/K$ forming a group is an "if and only if" statement and not difficult to prove as well. Still, any help on my questions above would be great.
abstract-algebra group-theory
$endgroup$
add a comment |
$begingroup$
I want to get an intuitive idea of the operation being "well-defined" for quotient groups. So, let's say I have a group $G$, with subgroup $H$, and let's say my set of left cosets is $G/K$. My lecture note says this: If $H$ is normal, then $G/H$ is a group under binary operation $aH circ bH = (ab)H$. So let's say I am asked whether $G/H$ forms a group where $H$ is not normal, and I have already determined that. My professor referred to the following which I am not sure if I totally understand:
Show that there are $a, b, a', b' in G$ such that $ aH = a'H$ and $bH = b'H$ but $aH circ bH = (ab)H neq a'H circ b'H = (a'b')H$, and you are done, and I did what she suggested, but I am not sure what is going on. So,
$1.$ What did I exactly show by proving what my professor suggested?
$2.$ In general, is it a strategy that every time you have to prove $G/H$ does not form a group for a non-normal $H$, you show that the operation is not well-defined?
Also, a quick google search also showed me that the theorem that talks about $G/K$ forming a group is an "if and only if" statement and not difficult to prove as well. Still, any help on my questions above would be great.
abstract-algebra group-theory
$endgroup$
6
$begingroup$
For multiplication of cosets to be well-defined you have to get the same answer no matter which representative of the cosets you choose
$endgroup$
– J. W. Tanner
Apr 10 at 0:56
1
$begingroup$
If $C,D$ are cosets of $H$, we'd like to define $C*D$ by taking a random element of $a in C$ and a random element of $b in D$ and define $C*D = E$ where $E$ is the coset containing $ab$. But we've made a random choice here, so we would expect $E$ to also be "random". But as it turns out, we get the same result $E$ no matter what $a, b$ we pick. That's what we mean when we say the operation is well-defined. In general, to prove something is well-defined means to prove that the "random" choices we made during the construction don't change the result.
$endgroup$
– Jair Taylor
Apr 10 at 1:17
add a comment |
$begingroup$
I want to get an intuitive idea of the operation being "well-defined" for quotient groups. So, let's say I have a group $G$, with subgroup $H$, and let's say my set of left cosets is $G/K$. My lecture note says this: If $H$ is normal, then $G/H$ is a group under binary operation $aH circ bH = (ab)H$. So let's say I am asked whether $G/H$ forms a group where $H$ is not normal, and I have already determined that. My professor referred to the following which I am not sure if I totally understand:
Show that there are $a, b, a', b' in G$ such that $ aH = a'H$ and $bH = b'H$ but $aH circ bH = (ab)H neq a'H circ b'H = (a'b')H$, and you are done, and I did what she suggested, but I am not sure what is going on. So,
$1.$ What did I exactly show by proving what my professor suggested?
$2.$ In general, is it a strategy that every time you have to prove $G/H$ does not form a group for a non-normal $H$, you show that the operation is not well-defined?
Also, a quick google search also showed me that the theorem that talks about $G/K$ forming a group is an "if and only if" statement and not difficult to prove as well. Still, any help on my questions above would be great.
abstract-algebra group-theory
$endgroup$
I want to get an intuitive idea of the operation being "well-defined" for quotient groups. So, let's say I have a group $G$, with subgroup $H$, and let's say my set of left cosets is $G/K$. My lecture note says this: If $H$ is normal, then $G/H$ is a group under binary operation $aH circ bH = (ab)H$. So let's say I am asked whether $G/H$ forms a group where $H$ is not normal, and I have already determined that. My professor referred to the following which I am not sure if I totally understand:
Show that there are $a, b, a', b' in G$ such that $ aH = a'H$ and $bH = b'H$ but $aH circ bH = (ab)H neq a'H circ b'H = (a'b')H$, and you are done, and I did what she suggested, but I am not sure what is going on. So,
$1.$ What did I exactly show by proving what my professor suggested?
$2.$ In general, is it a strategy that every time you have to prove $G/H$ does not form a group for a non-normal $H$, you show that the operation is not well-defined?
Also, a quick google search also showed me that the theorem that talks about $G/K$ forming a group is an "if and only if" statement and not difficult to prove as well. Still, any help on my questions above would be great.
abstract-algebra group-theory
abstract-algebra group-theory
asked Apr 10 at 0:51
UfomammutUfomammut
429414
429414
6
$begingroup$
For multiplication of cosets to be well-defined you have to get the same answer no matter which representative of the cosets you choose
$endgroup$
– J. W. Tanner
Apr 10 at 0:56
1
$begingroup$
If $C,D$ are cosets of $H$, we'd like to define $C*D$ by taking a random element of $a in C$ and a random element of $b in D$ and define $C*D = E$ where $E$ is the coset containing $ab$. But we've made a random choice here, so we would expect $E$ to also be "random". But as it turns out, we get the same result $E$ no matter what $a, b$ we pick. That's what we mean when we say the operation is well-defined. In general, to prove something is well-defined means to prove that the "random" choices we made during the construction don't change the result.
$endgroup$
– Jair Taylor
Apr 10 at 1:17
add a comment |
6
$begingroup$
For multiplication of cosets to be well-defined you have to get the same answer no matter which representative of the cosets you choose
$endgroup$
– J. W. Tanner
Apr 10 at 0:56
1
$begingroup$
If $C,D$ are cosets of $H$, we'd like to define $C*D$ by taking a random element of $a in C$ and a random element of $b in D$ and define $C*D = E$ where $E$ is the coset containing $ab$. But we've made a random choice here, so we would expect $E$ to also be "random". But as it turns out, we get the same result $E$ no matter what $a, b$ we pick. That's what we mean when we say the operation is well-defined. In general, to prove something is well-defined means to prove that the "random" choices we made during the construction don't change the result.
$endgroup$
– Jair Taylor
Apr 10 at 1:17
6
6
$begingroup$
For multiplication of cosets to be well-defined you have to get the same answer no matter which representative of the cosets you choose
$endgroup$
– J. W. Tanner
Apr 10 at 0:56
$begingroup$
For multiplication of cosets to be well-defined you have to get the same answer no matter which representative of the cosets you choose
$endgroup$
– J. W. Tanner
Apr 10 at 0:56
1
1
$begingroup$
If $C,D$ are cosets of $H$, we'd like to define $C*D$ by taking a random element of $a in C$ and a random element of $b in D$ and define $C*D = E$ where $E$ is the coset containing $ab$. But we've made a random choice here, so we would expect $E$ to also be "random". But as it turns out, we get the same result $E$ no matter what $a, b$ we pick. That's what we mean when we say the operation is well-defined. In general, to prove something is well-defined means to prove that the "random" choices we made during the construction don't change the result.
$endgroup$
– Jair Taylor
Apr 10 at 1:17
$begingroup$
If $C,D$ are cosets of $H$, we'd like to define $C*D$ by taking a random element of $a in C$ and a random element of $b in D$ and define $C*D = E$ where $E$ is the coset containing $ab$. But we've made a random choice here, so we would expect $E$ to also be "random". But as it turns out, we get the same result $E$ no matter what $a, b$ we pick. That's what we mean when we say the operation is well-defined. In general, to prove something is well-defined means to prove that the "random" choices we made during the construction don't change the result.
$endgroup$
– Jair Taylor
Apr 10 at 1:17
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
In general, mathematicians use the phrase "well defined" when a definition is written in a form that depends (or, rather, seems to depend) on some more or less arbitrary choice. If you make such a definition, you are obligated to show that another choice that satisfied appropriate conditions would lead to the same result.
In a group the product $abc$ is well defined to be $(ab)c$ because its value does not depend on your choice of where to put the parentheses: associativity guarantees $(ab)c = a(bc)$. This fact is so intuitively clear that it's often not made explicit in a beginning algebra course.
When considering quotient groups, you want to define the multiplication of two cosets by choosing an element from each, multiplying them together, and taking the coset of the product. This coset product will be well defined only when the coset of the product of the two group elements does not depend on which ones you happened to choose. The sum of any two odd numbers will be even, so the product of cosets
$(2mathbbZ + 1) circ (2mathbbZ + 1)$ is $2mathbbZ$.
There is an alternative definition. You can define the product of two cosets $A$ and $B$ as
$$
A circ B = a in A text and b in B .
$$
This definition does not make any arbitrary choices, but you don't know that the set so defined is really a coset until you prove it.
$endgroup$
$begingroup$
I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
$endgroup$
– Ufomammut
Apr 10 at 1:11
1
$begingroup$
Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
$endgroup$
– Ethan Bolker
Apr 10 at 1:17
add a comment |
$begingroup$
Perhaps a concrete example will make it clearer?
We need a non-abelian group. Let's take the simplest one there is, namely $G=S_3$.
We need a non-normal subgroup. Let's take $H=e,(12)$.
We need two cosets. Using $H$ itself might be too trivial, so it seems most promising to take
$$ a=(23) qquad aH = (23),(132) = a'H qquad a'=(132) $$
$$ b=(13) qquad bH = (13),(123) = b'H qquad b'=(123) $$
Now, if we had a quotient group what should the product $(23),(132)circ(13),(123)$ be?
From one perspective we have
$$(23)Hcirc(13)H =^? (123)H$$
But we could also say
$$(132)Hcirc(123)H =^? eH = H$$
But the product of the coset $(12),(132)$ with the coset $(23),(123)$ cannot be allowed to depend on what we choose to call those cosets. And here we have two calculations that say it should be two different things! So we're in trouble.
$endgroup$
$begingroup$
The example helped a lot. Great explanation.
$endgroup$
– Ufomammut
Apr 10 at 1:14
add a comment |
$begingroup$
Here's a different description that gives a different lens on all of this.
An equivalence relation on a set is a binary relation (call it $sim$) that is reflexive ($xsim x$), symmetric ($xsim yimplies ysim x$), and transitive ($xsim y land ysim z implies xsim z$). Given a group $G$ with a subgroup $H$, we can define an equivalence relation on the underlying set of $G$ via $asim b iff ab^-1in H$. Prove that this is indeed an equivalence relation.
An equivalence class of an element $x$ with respect to some equivalence relation $sim$ is the set $ymid xsim y$. I'll use $[x]$ as notation for the equivalence class of $x$ (where the relevant equivalence relation is left implicit and resolved from context). For the equivalence relation above on $G$, what does $[g]$ look like for an arbitrary element of $G$? One particularly notable case is $[1]=gmid 1sim g=gmid g^-1in H=H$.
Since our example is on a group, it would be nice to know that the equivalence relation respects the group operation. The idea is that we want to think of $xsim y$ as $x$ "equals" $y$, and so if $xsim x'$ and $ysim y'$ we would want $xysim x'y'$ as would obviously be the case for equality. (Show that this is the same as $[x][y]=[xy]$ where the multiplication of two sets of group elements is defined as $XY=xymid xin Xland yin Y$.) An equivalence that respects the group operation is called a congruence. (More generally, a congruence refers to an equivalence relation that respects whatever operations are relevant. For example, a congruence on rings would respect multiplication and addition.) Alternatively, if we're given an equivalence relation, we can say that an operation is well-defined if it takes "equals" to "equals". In other words, "the group operation is well-defined with respect to $sim$" is the same as "$sim$ respects the group operation". The only difference is one of connotation, namely which of the group operation or the equivalence relation we would "blame" if the statement failed to hold.
So the first question is: is the equivalence defined above a congruence?
Given any equivalence relation on a group, we can extend it to a congruence. That is, we can consider the smallest congruence that contains the original equivalence relation. This is called the congruence generated by the equivalence relation. It's quite possible that the generated congruence is the same as the original equivalence relation. Now let's assume we've been given a congruence on $G$ written $approx$. We have $aapprox biff ab^-1approx 1$. (Why?) We can thus show $aapprox biff ab^-1in[1]$, mimicking our first equivalence relation.
Second and third questions: What does $[1]$ look like in this case? What does $[1]$ look like for the congruence generated by our first equivalence relation, $sim$?
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181739%2funderstanding-the-implication-of-what-well-defined-means-for-the-operation-in%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In general, mathematicians use the phrase "well defined" when a definition is written in a form that depends (or, rather, seems to depend) on some more or less arbitrary choice. If you make such a definition, you are obligated to show that another choice that satisfied appropriate conditions would lead to the same result.
In a group the product $abc$ is well defined to be $(ab)c$ because its value does not depend on your choice of where to put the parentheses: associativity guarantees $(ab)c = a(bc)$. This fact is so intuitively clear that it's often not made explicit in a beginning algebra course.
When considering quotient groups, you want to define the multiplication of two cosets by choosing an element from each, multiplying them together, and taking the coset of the product. This coset product will be well defined only when the coset of the product of the two group elements does not depend on which ones you happened to choose. The sum of any two odd numbers will be even, so the product of cosets
$(2mathbbZ + 1) circ (2mathbbZ + 1)$ is $2mathbbZ$.
There is an alternative definition. You can define the product of two cosets $A$ and $B$ as
$$
A circ B = a in A text and b in B .
$$
This definition does not make any arbitrary choices, but you don't know that the set so defined is really a coset until you prove it.
$endgroup$
$begingroup$
I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
$endgroup$
– Ufomammut
Apr 10 at 1:11
1
$begingroup$
Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
$endgroup$
– Ethan Bolker
Apr 10 at 1:17
add a comment |
$begingroup$
In general, mathematicians use the phrase "well defined" when a definition is written in a form that depends (or, rather, seems to depend) on some more or less arbitrary choice. If you make such a definition, you are obligated to show that another choice that satisfied appropriate conditions would lead to the same result.
In a group the product $abc$ is well defined to be $(ab)c$ because its value does not depend on your choice of where to put the parentheses: associativity guarantees $(ab)c = a(bc)$. This fact is so intuitively clear that it's often not made explicit in a beginning algebra course.
When considering quotient groups, you want to define the multiplication of two cosets by choosing an element from each, multiplying them together, and taking the coset of the product. This coset product will be well defined only when the coset of the product of the two group elements does not depend on which ones you happened to choose. The sum of any two odd numbers will be even, so the product of cosets
$(2mathbbZ + 1) circ (2mathbbZ + 1)$ is $2mathbbZ$.
There is an alternative definition. You can define the product of two cosets $A$ and $B$ as
$$
A circ B = a in A text and b in B .
$$
This definition does not make any arbitrary choices, but you don't know that the set so defined is really a coset until you prove it.
$endgroup$
$begingroup$
I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
$endgroup$
– Ufomammut
Apr 10 at 1:11
1
$begingroup$
Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
$endgroup$
– Ethan Bolker
Apr 10 at 1:17
add a comment |
$begingroup$
In general, mathematicians use the phrase "well defined" when a definition is written in a form that depends (or, rather, seems to depend) on some more or less arbitrary choice. If you make such a definition, you are obligated to show that another choice that satisfied appropriate conditions would lead to the same result.
In a group the product $abc$ is well defined to be $(ab)c$ because its value does not depend on your choice of where to put the parentheses: associativity guarantees $(ab)c = a(bc)$. This fact is so intuitively clear that it's often not made explicit in a beginning algebra course.
When considering quotient groups, you want to define the multiplication of two cosets by choosing an element from each, multiplying them together, and taking the coset of the product. This coset product will be well defined only when the coset of the product of the two group elements does not depend on which ones you happened to choose. The sum of any two odd numbers will be even, so the product of cosets
$(2mathbbZ + 1) circ (2mathbbZ + 1)$ is $2mathbbZ$.
There is an alternative definition. You can define the product of two cosets $A$ and $B$ as
$$
A circ B = a in A text and b in B .
$$
This definition does not make any arbitrary choices, but you don't know that the set so defined is really a coset until you prove it.
$endgroup$
In general, mathematicians use the phrase "well defined" when a definition is written in a form that depends (or, rather, seems to depend) on some more or less arbitrary choice. If you make such a definition, you are obligated to show that another choice that satisfied appropriate conditions would lead to the same result.
In a group the product $abc$ is well defined to be $(ab)c$ because its value does not depend on your choice of where to put the parentheses: associativity guarantees $(ab)c = a(bc)$. This fact is so intuitively clear that it's often not made explicit in a beginning algebra course.
When considering quotient groups, you want to define the multiplication of two cosets by choosing an element from each, multiplying them together, and taking the coset of the product. This coset product will be well defined only when the coset of the product of the two group elements does not depend on which ones you happened to choose. The sum of any two odd numbers will be even, so the product of cosets
$(2mathbbZ + 1) circ (2mathbbZ + 1)$ is $2mathbbZ$.
There is an alternative definition. You can define the product of two cosets $A$ and $B$ as
$$
A circ B = a in A text and b in B .
$$
This definition does not make any arbitrary choices, but you don't know that the set so defined is really a coset until you prove it.
edited Apr 10 at 1:20
answered Apr 10 at 1:03
Ethan BolkerEthan Bolker
47.2k555123
47.2k555123
$begingroup$
I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
$endgroup$
– Ufomammut
Apr 10 at 1:11
1
$begingroup$
Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
$endgroup$
– Ethan Bolker
Apr 10 at 1:17
add a comment |
$begingroup$
I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
$endgroup$
– Ufomammut
Apr 10 at 1:11
1
$begingroup$
Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
$endgroup$
– Ethan Bolker
Apr 10 at 1:17
$begingroup$
I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
$endgroup$
– Ufomammut
Apr 10 at 1:11
$begingroup$
I do not know if what I am asking makes sense, but is the way the binary operation between two sets of the set of cosets is defined always the same? Also, getting back to my question, is this equivalent to proving closure under the binary operation?
$endgroup$
– Ufomammut
Apr 10 at 1:11
1
1
$begingroup$
Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
$endgroup$
– Ethan Bolker
Apr 10 at 1:17
$begingroup$
Closure is a bit of a red herring. In your definition of the coset product you always get a coset as the result. The issue is proving that the particular coset is independent of the choices. In my alternative definition you have to prove that a particular set is a coset. Closure only comes up when you already have an operation defined and you want to show you don't leave some subset. So the set of odd integers is not closed under addition.
$endgroup$
– Ethan Bolker
Apr 10 at 1:17
add a comment |
$begingroup$
Perhaps a concrete example will make it clearer?
We need a non-abelian group. Let's take the simplest one there is, namely $G=S_3$.
We need a non-normal subgroup. Let's take $H=e,(12)$.
We need two cosets. Using $H$ itself might be too trivial, so it seems most promising to take
$$ a=(23) qquad aH = (23),(132) = a'H qquad a'=(132) $$
$$ b=(13) qquad bH = (13),(123) = b'H qquad b'=(123) $$
Now, if we had a quotient group what should the product $(23),(132)circ(13),(123)$ be?
From one perspective we have
$$(23)Hcirc(13)H =^? (123)H$$
But we could also say
$$(132)Hcirc(123)H =^? eH = H$$
But the product of the coset $(12),(132)$ with the coset $(23),(123)$ cannot be allowed to depend on what we choose to call those cosets. And here we have two calculations that say it should be two different things! So we're in trouble.
$endgroup$
$begingroup$
The example helped a lot. Great explanation.
$endgroup$
– Ufomammut
Apr 10 at 1:14
add a comment |
$begingroup$
Perhaps a concrete example will make it clearer?
We need a non-abelian group. Let's take the simplest one there is, namely $G=S_3$.
We need a non-normal subgroup. Let's take $H=e,(12)$.
We need two cosets. Using $H$ itself might be too trivial, so it seems most promising to take
$$ a=(23) qquad aH = (23),(132) = a'H qquad a'=(132) $$
$$ b=(13) qquad bH = (13),(123) = b'H qquad b'=(123) $$
Now, if we had a quotient group what should the product $(23),(132)circ(13),(123)$ be?
From one perspective we have
$$(23)Hcirc(13)H =^? (123)H$$
But we could also say
$$(132)Hcirc(123)H =^? eH = H$$
But the product of the coset $(12),(132)$ with the coset $(23),(123)$ cannot be allowed to depend on what we choose to call those cosets. And here we have two calculations that say it should be two different things! So we're in trouble.
$endgroup$
$begingroup$
The example helped a lot. Great explanation.
$endgroup$
– Ufomammut
Apr 10 at 1:14
add a comment |
$begingroup$
Perhaps a concrete example will make it clearer?
We need a non-abelian group. Let's take the simplest one there is, namely $G=S_3$.
We need a non-normal subgroup. Let's take $H=e,(12)$.
We need two cosets. Using $H$ itself might be too trivial, so it seems most promising to take
$$ a=(23) qquad aH = (23),(132) = a'H qquad a'=(132) $$
$$ b=(13) qquad bH = (13),(123) = b'H qquad b'=(123) $$
Now, if we had a quotient group what should the product $(23),(132)circ(13),(123)$ be?
From one perspective we have
$$(23)Hcirc(13)H =^? (123)H$$
But we could also say
$$(132)Hcirc(123)H =^? eH = H$$
But the product of the coset $(12),(132)$ with the coset $(23),(123)$ cannot be allowed to depend on what we choose to call those cosets. And here we have two calculations that say it should be two different things! So we're in trouble.
$endgroup$
Perhaps a concrete example will make it clearer?
We need a non-abelian group. Let's take the simplest one there is, namely $G=S_3$.
We need a non-normal subgroup. Let's take $H=e,(12)$.
We need two cosets. Using $H$ itself might be too trivial, so it seems most promising to take
$$ a=(23) qquad aH = (23),(132) = a'H qquad a'=(132) $$
$$ b=(13) qquad bH = (13),(123) = b'H qquad b'=(123) $$
Now, if we had a quotient group what should the product $(23),(132)circ(13),(123)$ be?
From one perspective we have
$$(23)Hcirc(13)H =^? (123)H$$
But we could also say
$$(132)Hcirc(123)H =^? eH = H$$
But the product of the coset $(12),(132)$ with the coset $(23),(123)$ cannot be allowed to depend on what we choose to call those cosets. And here we have two calculations that say it should be two different things! So we're in trouble.
edited Apr 10 at 10:03
answered Apr 10 at 1:12
Henning MakholmHenning Makholm
245k17314558
245k17314558
$begingroup$
The example helped a lot. Great explanation.
$endgroup$
– Ufomammut
Apr 10 at 1:14
add a comment |
$begingroup$
The example helped a lot. Great explanation.
$endgroup$
– Ufomammut
Apr 10 at 1:14
$begingroup$
The example helped a lot. Great explanation.
$endgroup$
– Ufomammut
Apr 10 at 1:14
$begingroup$
The example helped a lot. Great explanation.
$endgroup$
– Ufomammut
Apr 10 at 1:14
add a comment |
$begingroup$
Here's a different description that gives a different lens on all of this.
An equivalence relation on a set is a binary relation (call it $sim$) that is reflexive ($xsim x$), symmetric ($xsim yimplies ysim x$), and transitive ($xsim y land ysim z implies xsim z$). Given a group $G$ with a subgroup $H$, we can define an equivalence relation on the underlying set of $G$ via $asim b iff ab^-1in H$. Prove that this is indeed an equivalence relation.
An equivalence class of an element $x$ with respect to some equivalence relation $sim$ is the set $ymid xsim y$. I'll use $[x]$ as notation for the equivalence class of $x$ (where the relevant equivalence relation is left implicit and resolved from context). For the equivalence relation above on $G$, what does $[g]$ look like for an arbitrary element of $G$? One particularly notable case is $[1]=gmid 1sim g=gmid g^-1in H=H$.
Since our example is on a group, it would be nice to know that the equivalence relation respects the group operation. The idea is that we want to think of $xsim y$ as $x$ "equals" $y$, and so if $xsim x'$ and $ysim y'$ we would want $xysim x'y'$ as would obviously be the case for equality. (Show that this is the same as $[x][y]=[xy]$ where the multiplication of two sets of group elements is defined as $XY=xymid xin Xland yin Y$.) An equivalence that respects the group operation is called a congruence. (More generally, a congruence refers to an equivalence relation that respects whatever operations are relevant. For example, a congruence on rings would respect multiplication and addition.) Alternatively, if we're given an equivalence relation, we can say that an operation is well-defined if it takes "equals" to "equals". In other words, "the group operation is well-defined with respect to $sim$" is the same as "$sim$ respects the group operation". The only difference is one of connotation, namely which of the group operation or the equivalence relation we would "blame" if the statement failed to hold.
So the first question is: is the equivalence defined above a congruence?
Given any equivalence relation on a group, we can extend it to a congruence. That is, we can consider the smallest congruence that contains the original equivalence relation. This is called the congruence generated by the equivalence relation. It's quite possible that the generated congruence is the same as the original equivalence relation. Now let's assume we've been given a congruence on $G$ written $approx$. We have $aapprox biff ab^-1approx 1$. (Why?) We can thus show $aapprox biff ab^-1in[1]$, mimicking our first equivalence relation.
Second and third questions: What does $[1]$ look like in this case? What does $[1]$ look like for the congruence generated by our first equivalence relation, $sim$?
$endgroup$
add a comment |
$begingroup$
Here's a different description that gives a different lens on all of this.
An equivalence relation on a set is a binary relation (call it $sim$) that is reflexive ($xsim x$), symmetric ($xsim yimplies ysim x$), and transitive ($xsim y land ysim z implies xsim z$). Given a group $G$ with a subgroup $H$, we can define an equivalence relation on the underlying set of $G$ via $asim b iff ab^-1in H$. Prove that this is indeed an equivalence relation.
An equivalence class of an element $x$ with respect to some equivalence relation $sim$ is the set $ymid xsim y$. I'll use $[x]$ as notation for the equivalence class of $x$ (where the relevant equivalence relation is left implicit and resolved from context). For the equivalence relation above on $G$, what does $[g]$ look like for an arbitrary element of $G$? One particularly notable case is $[1]=gmid 1sim g=gmid g^-1in H=H$.
Since our example is on a group, it would be nice to know that the equivalence relation respects the group operation. The idea is that we want to think of $xsim y$ as $x$ "equals" $y$, and so if $xsim x'$ and $ysim y'$ we would want $xysim x'y'$ as would obviously be the case for equality. (Show that this is the same as $[x][y]=[xy]$ where the multiplication of two sets of group elements is defined as $XY=xymid xin Xland yin Y$.) An equivalence that respects the group operation is called a congruence. (More generally, a congruence refers to an equivalence relation that respects whatever operations are relevant. For example, a congruence on rings would respect multiplication and addition.) Alternatively, if we're given an equivalence relation, we can say that an operation is well-defined if it takes "equals" to "equals". In other words, "the group operation is well-defined with respect to $sim$" is the same as "$sim$ respects the group operation". The only difference is one of connotation, namely which of the group operation or the equivalence relation we would "blame" if the statement failed to hold.
So the first question is: is the equivalence defined above a congruence?
Given any equivalence relation on a group, we can extend it to a congruence. That is, we can consider the smallest congruence that contains the original equivalence relation. This is called the congruence generated by the equivalence relation. It's quite possible that the generated congruence is the same as the original equivalence relation. Now let's assume we've been given a congruence on $G$ written $approx$. We have $aapprox biff ab^-1approx 1$. (Why?) We can thus show $aapprox biff ab^-1in[1]$, mimicking our first equivalence relation.
Second and third questions: What does $[1]$ look like in this case? What does $[1]$ look like for the congruence generated by our first equivalence relation, $sim$?
$endgroup$
add a comment |
$begingroup$
Here's a different description that gives a different lens on all of this.
An equivalence relation on a set is a binary relation (call it $sim$) that is reflexive ($xsim x$), symmetric ($xsim yimplies ysim x$), and transitive ($xsim y land ysim z implies xsim z$). Given a group $G$ with a subgroup $H$, we can define an equivalence relation on the underlying set of $G$ via $asim b iff ab^-1in H$. Prove that this is indeed an equivalence relation.
An equivalence class of an element $x$ with respect to some equivalence relation $sim$ is the set $ymid xsim y$. I'll use $[x]$ as notation for the equivalence class of $x$ (where the relevant equivalence relation is left implicit and resolved from context). For the equivalence relation above on $G$, what does $[g]$ look like for an arbitrary element of $G$? One particularly notable case is $[1]=gmid 1sim g=gmid g^-1in H=H$.
Since our example is on a group, it would be nice to know that the equivalence relation respects the group operation. The idea is that we want to think of $xsim y$ as $x$ "equals" $y$, and so if $xsim x'$ and $ysim y'$ we would want $xysim x'y'$ as would obviously be the case for equality. (Show that this is the same as $[x][y]=[xy]$ where the multiplication of two sets of group elements is defined as $XY=xymid xin Xland yin Y$.) An equivalence that respects the group operation is called a congruence. (More generally, a congruence refers to an equivalence relation that respects whatever operations are relevant. For example, a congruence on rings would respect multiplication and addition.) Alternatively, if we're given an equivalence relation, we can say that an operation is well-defined if it takes "equals" to "equals". In other words, "the group operation is well-defined with respect to $sim$" is the same as "$sim$ respects the group operation". The only difference is one of connotation, namely which of the group operation or the equivalence relation we would "blame" if the statement failed to hold.
So the first question is: is the equivalence defined above a congruence?
Given any equivalence relation on a group, we can extend it to a congruence. That is, we can consider the smallest congruence that contains the original equivalence relation. This is called the congruence generated by the equivalence relation. It's quite possible that the generated congruence is the same as the original equivalence relation. Now let's assume we've been given a congruence on $G$ written $approx$. We have $aapprox biff ab^-1approx 1$. (Why?) We can thus show $aapprox biff ab^-1in[1]$, mimicking our first equivalence relation.
Second and third questions: What does $[1]$ look like in this case? What does $[1]$ look like for the congruence generated by our first equivalence relation, $sim$?
$endgroup$
Here's a different description that gives a different lens on all of this.
An equivalence relation on a set is a binary relation (call it $sim$) that is reflexive ($xsim x$), symmetric ($xsim yimplies ysim x$), and transitive ($xsim y land ysim z implies xsim z$). Given a group $G$ with a subgroup $H$, we can define an equivalence relation on the underlying set of $G$ via $asim b iff ab^-1in H$. Prove that this is indeed an equivalence relation.
An equivalence class of an element $x$ with respect to some equivalence relation $sim$ is the set $ymid xsim y$. I'll use $[x]$ as notation for the equivalence class of $x$ (where the relevant equivalence relation is left implicit and resolved from context). For the equivalence relation above on $G$, what does $[g]$ look like for an arbitrary element of $G$? One particularly notable case is $[1]=gmid 1sim g=gmid g^-1in H=H$.
Since our example is on a group, it would be nice to know that the equivalence relation respects the group operation. The idea is that we want to think of $xsim y$ as $x$ "equals" $y$, and so if $xsim x'$ and $ysim y'$ we would want $xysim x'y'$ as would obviously be the case for equality. (Show that this is the same as $[x][y]=[xy]$ where the multiplication of two sets of group elements is defined as $XY=xymid xin Xland yin Y$.) An equivalence that respects the group operation is called a congruence. (More generally, a congruence refers to an equivalence relation that respects whatever operations are relevant. For example, a congruence on rings would respect multiplication and addition.) Alternatively, if we're given an equivalence relation, we can say that an operation is well-defined if it takes "equals" to "equals". In other words, "the group operation is well-defined with respect to $sim$" is the same as "$sim$ respects the group operation". The only difference is one of connotation, namely which of the group operation or the equivalence relation we would "blame" if the statement failed to hold.
So the first question is: is the equivalence defined above a congruence?
Given any equivalence relation on a group, we can extend it to a congruence. That is, we can consider the smallest congruence that contains the original equivalence relation. This is called the congruence generated by the equivalence relation. It's quite possible that the generated congruence is the same as the original equivalence relation. Now let's assume we've been given a congruence on $G$ written $approx$. We have $aapprox biff ab^-1approx 1$. (Why?) We can thus show $aapprox biff ab^-1in[1]$, mimicking our first equivalence relation.
Second and third questions: What does $[1]$ look like in this case? What does $[1]$ look like for the congruence generated by our first equivalence relation, $sim$?
answered Apr 10 at 19:39
Derek ElkinsDerek Elkins
17.9k11437
17.9k11437
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181739%2funderstanding-the-implication-of-what-well-defined-means-for-the-operation-in%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
6
$begingroup$
For multiplication of cosets to be well-defined you have to get the same answer no matter which representative of the cosets you choose
$endgroup$
– J. W. Tanner
Apr 10 at 0:56
1
$begingroup$
If $C,D$ are cosets of $H$, we'd like to define $C*D$ by taking a random element of $a in C$ and a random element of $b in D$ and define $C*D = E$ where $E$ is the coset containing $ab$. But we've made a random choice here, so we would expect $E$ to also be "random". But as it turns out, we get the same result $E$ no matter what $a, b$ we pick. That's what we mean when we say the operation is well-defined. In general, to prove something is well-defined means to prove that the "random" choices we made during the construction don't change the result.
$endgroup$
– Jair Taylor
Apr 10 at 1:17