Rank groups within a grouped sequence of TRUE/FALSE and NAGrouping functions (tapply, by, aggregate) and the *apply familyCharacters counting and subletting specific patternsWhat is the purpose of setting a key in data.table?data.table vs dplyr: can one do something well the other can't or does poorly?how to make a bar plot for a list of dataframes?How to group by unique values in a list in RPandas - Alternative to rank() function that gives unique ordinal ranks for a columnRank within group in for loop in RData transformation: from dyadic to observational data in RGetting map from purrr to work with paste0

Understanding trademark infringements in a world where many dictionary words are trademarks?

How to use dependency injection and avoid temporal coupling?

How to write a 12-bar blues melody

Can you Ready a Bard spell to release it after using Battle Magic?

Why did the Apollo 13 crew extend the LM landing gear?

SafeCracker #3 - We've Been Blocked

As a Bard multi-classing into Warlock, what spells do I get?

Multiple SQL versions with Docker

Didn't attend field-specific conferences during my PhD; how much of a disadvantage is it?

Copy previous line to current line from text file

Would glacier 'trees' be plausible?

As matter approaches a black hole, does it speed up?

Find the cheapest shipping option based on item weight

Python - What if the end-user didn't have the required library?

Why does this derived table improve performance?

Appropriate certificate to ask for a fibre installation (ANSI/TIA-568.3-D?)

How can internet speed be 10 times slower without a router than when using a router?

What to use instead of cling film to wrap pastry

What is the most remote airport from the center of the city it supposedly serves?

Validation rule Scheduled Apex

Shutter speed -vs- effective image stabilisation

Why do people keep telling me that I am a bad photographer?

Controlled Hadamard gate in ZX-calculus

A factorization game



Rank groups within a grouped sequence of TRUE/FALSE and NA


Grouping functions (tapply, by, aggregate) and the *apply familyCharacters counting and subletting specific patternsWhat is the purpose of setting a key in data.table?data.table vs dplyr: can one do something well the other can't or does poorly?how to make a bar plot for a list of dataframes?How to group by unique values in a list in RPandas - Alternative to rank() function that gives unique ordinal ranks for a columnRank within group in for loop in RData transformation: from dyadic to observational data in RGetting map from purrr to work with paste0






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








10















I have a little nut to crack.



I have a data.frame like this:



 group criterium
1 A NA
2 A TRUE
3 A TRUE
4 A TRUE
5 A FALSE
6 A FALSE
7 A TRUE
8 A TRUE
9 A FALSE
10 A TRUE
11 A TRUE
12 A TRUE
13 B NA
14 B FALSE
15 B TRUE
16 B TRUE
17 B TRUE
18 B FALSE

structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
"B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
-18L))



And I want to rank the groups of TRUE in column criterium in ascending order while disregarding the FALSEand NA. The goal is to have a unique group identifier inside each group of group.



So the result should look like:



 group criterium goal
1 A NA NA
2 A TRUE 1
3 A TRUE 1
4 A TRUE 1
5 A FALSE NA
6 A FALSE NA
7 A TRUE 2
8 A TRUE 2
9 A FALSE NA
10 A TRUE 3
11 A TRUE 3
12 A TRUE 3
13 B NA NA
14 B FALSE NA
15 B TRUE 1
16 B TRUE 1
17 B TRUE 1
18 B FALSE NA



I'm sure there is a relatively easy way to do this, I just can't think of one. I experimented with dense_rank() and other window functions of dplyr, but to no avail.










share|improve this question



















  • 1





    you can just about grab what you need with this work of beauty; as.numeric(as.factor(cumsum(is.na(d$criterium^NA)) + d$criterium^NA)) -- just needs to be applied by group

    – user20650
    Apr 10 at 8:45












  • that is a really funny solution. Very good job!

    – Humpelstielzchen
    Apr 10 at 8:49











  • In your example all of group A comes first, then group B. We don't need to handle cases with group=A, criterium=TRUE interspersed with group=B, criterium=TRUE?

    – smci
    Apr 10 at 8:50











  • No, when group A stops so stops the sequence for group A.

    – Humpelstielzchen
    Apr 10 at 8:51












  • But I'm suggesting if you construct an example with group=A, criterium=TRUE followed by group=B, criterium=TRUE (with no FALSE's in-between), would that get a new 'goal' number or not? Some of the answers here will fail because they don't group-by group or consider the discontinuity in group.

    – smci
    Apr 10 at 8:53


















10















I have a little nut to crack.



I have a data.frame like this:



 group criterium
1 A NA
2 A TRUE
3 A TRUE
4 A TRUE
5 A FALSE
6 A FALSE
7 A TRUE
8 A TRUE
9 A FALSE
10 A TRUE
11 A TRUE
12 A TRUE
13 B NA
14 B FALSE
15 B TRUE
16 B TRUE
17 B TRUE
18 B FALSE

structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
"B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
-18L))



And I want to rank the groups of TRUE in column criterium in ascending order while disregarding the FALSEand NA. The goal is to have a unique group identifier inside each group of group.



So the result should look like:



 group criterium goal
1 A NA NA
2 A TRUE 1
3 A TRUE 1
4 A TRUE 1
5 A FALSE NA
6 A FALSE NA
7 A TRUE 2
8 A TRUE 2
9 A FALSE NA
10 A TRUE 3
11 A TRUE 3
12 A TRUE 3
13 B NA NA
14 B FALSE NA
15 B TRUE 1
16 B TRUE 1
17 B TRUE 1
18 B FALSE NA



I'm sure there is a relatively easy way to do this, I just can't think of one. I experimented with dense_rank() and other window functions of dplyr, but to no avail.










share|improve this question



















  • 1





    you can just about grab what you need with this work of beauty; as.numeric(as.factor(cumsum(is.na(d$criterium^NA)) + d$criterium^NA)) -- just needs to be applied by group

    – user20650
    Apr 10 at 8:45












  • that is a really funny solution. Very good job!

    – Humpelstielzchen
    Apr 10 at 8:49











  • In your example all of group A comes first, then group B. We don't need to handle cases with group=A, criterium=TRUE interspersed with group=B, criterium=TRUE?

    – smci
    Apr 10 at 8:50











  • No, when group A stops so stops the sequence for group A.

    – Humpelstielzchen
    Apr 10 at 8:51












  • But I'm suggesting if you construct an example with group=A, criterium=TRUE followed by group=B, criterium=TRUE (with no FALSE's in-between), would that get a new 'goal' number or not? Some of the answers here will fail because they don't group-by group or consider the discontinuity in group.

    – smci
    Apr 10 at 8:53














10












10








10








I have a little nut to crack.



I have a data.frame like this:



 group criterium
1 A NA
2 A TRUE
3 A TRUE
4 A TRUE
5 A FALSE
6 A FALSE
7 A TRUE
8 A TRUE
9 A FALSE
10 A TRUE
11 A TRUE
12 A TRUE
13 B NA
14 B FALSE
15 B TRUE
16 B TRUE
17 B TRUE
18 B FALSE

structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
"B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
-18L))



And I want to rank the groups of TRUE in column criterium in ascending order while disregarding the FALSEand NA. The goal is to have a unique group identifier inside each group of group.



So the result should look like:



 group criterium goal
1 A NA NA
2 A TRUE 1
3 A TRUE 1
4 A TRUE 1
5 A FALSE NA
6 A FALSE NA
7 A TRUE 2
8 A TRUE 2
9 A FALSE NA
10 A TRUE 3
11 A TRUE 3
12 A TRUE 3
13 B NA NA
14 B FALSE NA
15 B TRUE 1
16 B TRUE 1
17 B TRUE 1
18 B FALSE NA



I'm sure there is a relatively easy way to do this, I just can't think of one. I experimented with dense_rank() and other window functions of dplyr, but to no avail.










share|improve this question
















I have a little nut to crack.



I have a data.frame like this:



 group criterium
1 A NA
2 A TRUE
3 A TRUE
4 A TRUE
5 A FALSE
6 A FALSE
7 A TRUE
8 A TRUE
9 A FALSE
10 A TRUE
11 A TRUE
12 A TRUE
13 B NA
14 B FALSE
15 B TRUE
16 B TRUE
17 B TRUE
18 B FALSE

structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
"B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
-18L))



And I want to rank the groups of TRUE in column criterium in ascending order while disregarding the FALSEand NA. The goal is to have a unique group identifier inside each group of group.



So the result should look like:



 group criterium goal
1 A NA NA
2 A TRUE 1
3 A TRUE 1
4 A TRUE 1
5 A FALSE NA
6 A FALSE NA
7 A TRUE 2
8 A TRUE 2
9 A FALSE NA
10 A TRUE 3
11 A TRUE 3
12 A TRUE 3
13 B NA NA
14 B FALSE NA
15 B TRUE 1
16 B TRUE 1
17 B TRUE 1
18 B FALSE NA



I'm sure there is a relatively easy way to do this, I just can't think of one. I experimented with dense_rank() and other window functions of dplyr, but to no avail.







r dplyr data.table rank






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 17 at 22:04









TylerH

16.2k105569




16.2k105569










asked Apr 10 at 6:47









HumpelstielzchenHumpelstielzchen

1,7991319




1,7991319







  • 1





    you can just about grab what you need with this work of beauty; as.numeric(as.factor(cumsum(is.na(d$criterium^NA)) + d$criterium^NA)) -- just needs to be applied by group

    – user20650
    Apr 10 at 8:45












  • that is a really funny solution. Very good job!

    – Humpelstielzchen
    Apr 10 at 8:49











  • In your example all of group A comes first, then group B. We don't need to handle cases with group=A, criterium=TRUE interspersed with group=B, criterium=TRUE?

    – smci
    Apr 10 at 8:50











  • No, when group A stops so stops the sequence for group A.

    – Humpelstielzchen
    Apr 10 at 8:51












  • But I'm suggesting if you construct an example with group=A, criterium=TRUE followed by group=B, criterium=TRUE (with no FALSE's in-between), would that get a new 'goal' number or not? Some of the answers here will fail because they don't group-by group or consider the discontinuity in group.

    – smci
    Apr 10 at 8:53













  • 1





    you can just about grab what you need with this work of beauty; as.numeric(as.factor(cumsum(is.na(d$criterium^NA)) + d$criterium^NA)) -- just needs to be applied by group

    – user20650
    Apr 10 at 8:45












  • that is a really funny solution. Very good job!

    – Humpelstielzchen
    Apr 10 at 8:49











  • In your example all of group A comes first, then group B. We don't need to handle cases with group=A, criterium=TRUE interspersed with group=B, criterium=TRUE?

    – smci
    Apr 10 at 8:50











  • No, when group A stops so stops the sequence for group A.

    – Humpelstielzchen
    Apr 10 at 8:51












  • But I'm suggesting if you construct an example with group=A, criterium=TRUE followed by group=B, criterium=TRUE (with no FALSE's in-between), would that get a new 'goal' number or not? Some of the answers here will fail because they don't group-by group or consider the discontinuity in group.

    – smci
    Apr 10 at 8:53








1




1





you can just about grab what you need with this work of beauty; as.numeric(as.factor(cumsum(is.na(d$criterium^NA)) + d$criterium^NA)) -- just needs to be applied by group

– user20650
Apr 10 at 8:45






you can just about grab what you need with this work of beauty; as.numeric(as.factor(cumsum(is.na(d$criterium^NA)) + d$criterium^NA)) -- just needs to be applied by group

– user20650
Apr 10 at 8:45














that is a really funny solution. Very good job!

– Humpelstielzchen
Apr 10 at 8:49





that is a really funny solution. Very good job!

– Humpelstielzchen
Apr 10 at 8:49













In your example all of group A comes first, then group B. We don't need to handle cases with group=A, criterium=TRUE interspersed with group=B, criterium=TRUE?

– smci
Apr 10 at 8:50





In your example all of group A comes first, then group B. We don't need to handle cases with group=A, criterium=TRUE interspersed with group=B, criterium=TRUE?

– smci
Apr 10 at 8:50













No, when group A stops so stops the sequence for group A.

– Humpelstielzchen
Apr 10 at 8:51






No, when group A stops so stops the sequence for group A.

– Humpelstielzchen
Apr 10 at 8:51














But I'm suggesting if you construct an example with group=A, criterium=TRUE followed by group=B, criterium=TRUE (with no FALSE's in-between), would that get a new 'goal' number or not? Some of the answers here will fail because they don't group-by group or consider the discontinuity in group.

– smci
Apr 10 at 8:53






But I'm suggesting if you construct an example with group=A, criterium=TRUE followed by group=B, criterium=TRUE (with no FALSE's in-between), would that get a new 'goal' number or not? Some of the answers here will fail because they don't group-by group or consider the discontinuity in group.

– smci
Apr 10 at 8:53













4 Answers
4






active

oldest

votes


















7














Another data.table approach:



library(data.table)
setDT(dt)
dt[, cr := rleid(criterium)][
(criterium), goal := rleid(cr), by=.(group)]





share|improve this answer






























    6














    Maybe I have over-complicated this but one way with dplyr is



    library(dplyr)

    df %>%
    mutate(temp = replace(criterium, is.na(criterium), FALSE),
    temp1 = cumsum(!temp)) %>%
    group_by(temp1) %>%
    mutate(goal = +(row_number() == which.max(temp) & any(temp))) %>%
    group_by(group) %>%
    mutate(goal = ifelse(temp, cumsum(goal), NA)) %>%
    select(-temp, -temp1)

    # group criterium goal
    # <fct> <lgl> <int>
    # 1 A NA NA
    # 2 A TRUE 1
    # 3 A TRUE 1
    # 4 A TRUE 1
    # 5 A FALSE NA
    # 6 A FALSE NA
    # 7 A TRUE 2
    # 8 A TRUE 2
    # 9 A FALSE NA
    #10 A TRUE 3
    #11 A TRUE 3
    #12 A TRUE 3
    #13 B NA NA
    #14 B FALSE NA
    #15 B TRUE 1
    #16 B TRUE 1
    #17 B TRUE 1
    #18 B FALSE NA


    We first replace NAs in criterium column to FALSE and take cumulative sum over the negation of it (temp1). We group_by temp1 and assign 1 to every first TRUE value in the group. Finally grouping by group we take a cumulative sum for TRUE values or return NA for FALSE and NA values.






    share|improve this answer






























      4














      A pure Base R solution, we can create a custom function via rle, and use it per group, i.e.



      f1 <- function(x) 
      x[is.na(x)] <- FALSE
      rle1 <- rle(x)
      y <- rle1$values
      rle1$values[!y] <- 0
      rle1$values[y] <- cumsum(rle1$values[y])
      return(inverse.rle(rle1))



      do.call(rbind,
      lapply(split(df, df$group), function(i)i$goal <- f1(i$criterium);
      i$goal <- replace(i$goal, is.na(i$criterium)))


      Of course, If you want you can apply it via dplyr, i.e.



      library(dplyr)

      df %>%
      group_by(group) %>%
      mutate(goal = f1(criterium),
      goal = replace(goal, is.na(criterium)|!criterium, NA))


      which gives,




      # A tibble: 18 x 3
      # Groups: group [2]
      group criterium goal
      <fct> <lgl> <dbl>
      1 A NA NA
      2 A TRUE 1
      3 A TRUE 1
      4 A TRUE 1
      5 A FALSE NA
      6 A FALSE NA
      7 A TRUE 2
      8 A TRUE 2
      9 A FALSE NA
      10 A TRUE 3
      11 A TRUE 3
      12 A TRUE 3
      13 B NA NA
      14 B FALSE NA
      15 B TRUE 1
      16 B TRUE 1
      17 B TRUE 1
      18 B FALSE NA






      share|improve this answer
































        4














        A data.table option using rle



        library(data.table)
        DT <- as.data.table(dat)
        DT[, goal :=
        r <- rle(replace(criterium, is.na(criterium), FALSE))
        r$values <- with(r, cumsum(values) * values)
        out <- inverse.rle(r)
        replace(out, out == 0, NA)
        , by = group]
        DT
        # group criterium goal
        # 1: A NA NA
        # 2: A TRUE 1
        # 3: A TRUE 1
        # 4: A TRUE 1
        # 5: A FALSE NA
        # 6: A FALSE NA
        # 7: A TRUE 2
        # 8: A TRUE 2
        # 9: A FALSE NA
        #10: A TRUE 3
        #11: A TRUE 3
        #12: A TRUE 3
        #13: B NA NA
        #14: B FALSE NA
        #15: B TRUE 1
        #16: B TRUE 1
        #17: B TRUE 1
        #18: B FALSE NA


        step by step



        When we call r <- rle(replace(criterium, is.na(criterium), FALSE)) we get an object of class rle



        r
        #Run Length Encoding
        # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
        # values : logi [1:9] FALSE TRUE FALSE TRUE FALSE TRUE ...


        We manipulate the values compenent in the following way



        r$values <- with(r, cumsum(values) * values)
        r
        #Run Length Encoding
        # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
        # values : int [1:9] 0 1 0 2 0 3 0 4 0


        That is, we replaced TRUEs with the cumulative sum of values and set the FALSEs to 0. Now inverse.rle returns a vector in which values will repeated lenghts times



        out <- inverse.rle(r)
        out
        # [1] 0 1 1 1 0 0 2 2 0 3 3 3 0 0 4 4 4 0


        This is almost what OP wants but we need to replace the 0s with NA



        replace(out, out == 0, NA)


        This is done for each group.



        data



        dat <- structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
        1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
        "B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
        FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
        TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
        -18L))





        share|improve this answer

























        • Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

          – Humpelstielzchen
          Apr 10 at 7:59






        • 1





          @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

          – markus
          Apr 10 at 8:02












        • Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

          – Humpelstielzchen
          Apr 10 at 8:36











        Your Answer






        StackExchange.ifUsing("editor", function ()
        StackExchange.using("externalEditor", function ()
        StackExchange.using("snippets", function ()
        StackExchange.snippets.init();
        );
        );
        , "code-snippets");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "1"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55606323%2frank-groups-within-a-grouped-sequence-of-true-false-and-na%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        7














        Another data.table approach:



        library(data.table)
        setDT(dt)
        dt[, cr := rleid(criterium)][
        (criterium), goal := rleid(cr), by=.(group)]





        share|improve this answer



























          7














          Another data.table approach:



          library(data.table)
          setDT(dt)
          dt[, cr := rleid(criterium)][
          (criterium), goal := rleid(cr), by=.(group)]





          share|improve this answer

























            7












            7








            7







            Another data.table approach:



            library(data.table)
            setDT(dt)
            dt[, cr := rleid(criterium)][
            (criterium), goal := rleid(cr), by=.(group)]





            share|improve this answer













            Another data.table approach:



            library(data.table)
            setDT(dt)
            dt[, cr := rleid(criterium)][
            (criterium), goal := rleid(cr), by=.(group)]






            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered Apr 10 at 8:20









            chinsoon12chinsoon12

            10.1k11420




            10.1k11420























                6














                Maybe I have over-complicated this but one way with dplyr is



                library(dplyr)

                df %>%
                mutate(temp = replace(criterium, is.na(criterium), FALSE),
                temp1 = cumsum(!temp)) %>%
                group_by(temp1) %>%
                mutate(goal = +(row_number() == which.max(temp) & any(temp))) %>%
                group_by(group) %>%
                mutate(goal = ifelse(temp, cumsum(goal), NA)) %>%
                select(-temp, -temp1)

                # group criterium goal
                # <fct> <lgl> <int>
                # 1 A NA NA
                # 2 A TRUE 1
                # 3 A TRUE 1
                # 4 A TRUE 1
                # 5 A FALSE NA
                # 6 A FALSE NA
                # 7 A TRUE 2
                # 8 A TRUE 2
                # 9 A FALSE NA
                #10 A TRUE 3
                #11 A TRUE 3
                #12 A TRUE 3
                #13 B NA NA
                #14 B FALSE NA
                #15 B TRUE 1
                #16 B TRUE 1
                #17 B TRUE 1
                #18 B FALSE NA


                We first replace NAs in criterium column to FALSE and take cumulative sum over the negation of it (temp1). We group_by temp1 and assign 1 to every first TRUE value in the group. Finally grouping by group we take a cumulative sum for TRUE values or return NA for FALSE and NA values.






                share|improve this answer



























                  6














                  Maybe I have over-complicated this but one way with dplyr is



                  library(dplyr)

                  df %>%
                  mutate(temp = replace(criterium, is.na(criterium), FALSE),
                  temp1 = cumsum(!temp)) %>%
                  group_by(temp1) %>%
                  mutate(goal = +(row_number() == which.max(temp) & any(temp))) %>%
                  group_by(group) %>%
                  mutate(goal = ifelse(temp, cumsum(goal), NA)) %>%
                  select(-temp, -temp1)

                  # group criterium goal
                  # <fct> <lgl> <int>
                  # 1 A NA NA
                  # 2 A TRUE 1
                  # 3 A TRUE 1
                  # 4 A TRUE 1
                  # 5 A FALSE NA
                  # 6 A FALSE NA
                  # 7 A TRUE 2
                  # 8 A TRUE 2
                  # 9 A FALSE NA
                  #10 A TRUE 3
                  #11 A TRUE 3
                  #12 A TRUE 3
                  #13 B NA NA
                  #14 B FALSE NA
                  #15 B TRUE 1
                  #16 B TRUE 1
                  #17 B TRUE 1
                  #18 B FALSE NA


                  We first replace NAs in criterium column to FALSE and take cumulative sum over the negation of it (temp1). We group_by temp1 and assign 1 to every first TRUE value in the group. Finally grouping by group we take a cumulative sum for TRUE values or return NA for FALSE and NA values.






                  share|improve this answer

























                    6












                    6








                    6







                    Maybe I have over-complicated this but one way with dplyr is



                    library(dplyr)

                    df %>%
                    mutate(temp = replace(criterium, is.na(criterium), FALSE),
                    temp1 = cumsum(!temp)) %>%
                    group_by(temp1) %>%
                    mutate(goal = +(row_number() == which.max(temp) & any(temp))) %>%
                    group_by(group) %>%
                    mutate(goal = ifelse(temp, cumsum(goal), NA)) %>%
                    select(-temp, -temp1)

                    # group criterium goal
                    # <fct> <lgl> <int>
                    # 1 A NA NA
                    # 2 A TRUE 1
                    # 3 A TRUE 1
                    # 4 A TRUE 1
                    # 5 A FALSE NA
                    # 6 A FALSE NA
                    # 7 A TRUE 2
                    # 8 A TRUE 2
                    # 9 A FALSE NA
                    #10 A TRUE 3
                    #11 A TRUE 3
                    #12 A TRUE 3
                    #13 B NA NA
                    #14 B FALSE NA
                    #15 B TRUE 1
                    #16 B TRUE 1
                    #17 B TRUE 1
                    #18 B FALSE NA


                    We first replace NAs in criterium column to FALSE and take cumulative sum over the negation of it (temp1). We group_by temp1 and assign 1 to every first TRUE value in the group. Finally grouping by group we take a cumulative sum for TRUE values or return NA for FALSE and NA values.






                    share|improve this answer













                    Maybe I have over-complicated this but one way with dplyr is



                    library(dplyr)

                    df %>%
                    mutate(temp = replace(criterium, is.na(criterium), FALSE),
                    temp1 = cumsum(!temp)) %>%
                    group_by(temp1) %>%
                    mutate(goal = +(row_number() == which.max(temp) & any(temp))) %>%
                    group_by(group) %>%
                    mutate(goal = ifelse(temp, cumsum(goal), NA)) %>%
                    select(-temp, -temp1)

                    # group criterium goal
                    # <fct> <lgl> <int>
                    # 1 A NA NA
                    # 2 A TRUE 1
                    # 3 A TRUE 1
                    # 4 A TRUE 1
                    # 5 A FALSE NA
                    # 6 A FALSE NA
                    # 7 A TRUE 2
                    # 8 A TRUE 2
                    # 9 A FALSE NA
                    #10 A TRUE 3
                    #11 A TRUE 3
                    #12 A TRUE 3
                    #13 B NA NA
                    #14 B FALSE NA
                    #15 B TRUE 1
                    #16 B TRUE 1
                    #17 B TRUE 1
                    #18 B FALSE NA


                    We first replace NAs in criterium column to FALSE and take cumulative sum over the negation of it (temp1). We group_by temp1 and assign 1 to every first TRUE value in the group. Finally grouping by group we take a cumulative sum for TRUE values or return NA for FALSE and NA values.







                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered Apr 10 at 7:24









                    Ronak ShahRonak Shah

                    51.4k104370




                    51.4k104370





















                        4














                        A pure Base R solution, we can create a custom function via rle, and use it per group, i.e.



                        f1 <- function(x) 
                        x[is.na(x)] <- FALSE
                        rle1 <- rle(x)
                        y <- rle1$values
                        rle1$values[!y] <- 0
                        rle1$values[y] <- cumsum(rle1$values[y])
                        return(inverse.rle(rle1))



                        do.call(rbind,
                        lapply(split(df, df$group), function(i)i$goal <- f1(i$criterium);
                        i$goal <- replace(i$goal, is.na(i$criterium)))


                        Of course, If you want you can apply it via dplyr, i.e.



                        library(dplyr)

                        df %>%
                        group_by(group) %>%
                        mutate(goal = f1(criterium),
                        goal = replace(goal, is.na(criterium)|!criterium, NA))


                        which gives,




                        # A tibble: 18 x 3
                        # Groups: group [2]
                        group criterium goal
                        <fct> <lgl> <dbl>
                        1 A NA NA
                        2 A TRUE 1
                        3 A TRUE 1
                        4 A TRUE 1
                        5 A FALSE NA
                        6 A FALSE NA
                        7 A TRUE 2
                        8 A TRUE 2
                        9 A FALSE NA
                        10 A TRUE 3
                        11 A TRUE 3
                        12 A TRUE 3
                        13 B NA NA
                        14 B FALSE NA
                        15 B TRUE 1
                        16 B TRUE 1
                        17 B TRUE 1
                        18 B FALSE NA






                        share|improve this answer





























                          4














                          A pure Base R solution, we can create a custom function via rle, and use it per group, i.e.



                          f1 <- function(x) 
                          x[is.na(x)] <- FALSE
                          rle1 <- rle(x)
                          y <- rle1$values
                          rle1$values[!y] <- 0
                          rle1$values[y] <- cumsum(rle1$values[y])
                          return(inverse.rle(rle1))



                          do.call(rbind,
                          lapply(split(df, df$group), function(i)i$goal <- f1(i$criterium);
                          i$goal <- replace(i$goal, is.na(i$criterium)))


                          Of course, If you want you can apply it via dplyr, i.e.



                          library(dplyr)

                          df %>%
                          group_by(group) %>%
                          mutate(goal = f1(criterium),
                          goal = replace(goal, is.na(criterium)|!criterium, NA))


                          which gives,




                          # A tibble: 18 x 3
                          # Groups: group [2]
                          group criterium goal
                          <fct> <lgl> <dbl>
                          1 A NA NA
                          2 A TRUE 1
                          3 A TRUE 1
                          4 A TRUE 1
                          5 A FALSE NA
                          6 A FALSE NA
                          7 A TRUE 2
                          8 A TRUE 2
                          9 A FALSE NA
                          10 A TRUE 3
                          11 A TRUE 3
                          12 A TRUE 3
                          13 B NA NA
                          14 B FALSE NA
                          15 B TRUE 1
                          16 B TRUE 1
                          17 B TRUE 1
                          18 B FALSE NA






                          share|improve this answer



























                            4












                            4








                            4







                            A pure Base R solution, we can create a custom function via rle, and use it per group, i.e.



                            f1 <- function(x) 
                            x[is.na(x)] <- FALSE
                            rle1 <- rle(x)
                            y <- rle1$values
                            rle1$values[!y] <- 0
                            rle1$values[y] <- cumsum(rle1$values[y])
                            return(inverse.rle(rle1))



                            do.call(rbind,
                            lapply(split(df, df$group), function(i)i$goal <- f1(i$criterium);
                            i$goal <- replace(i$goal, is.na(i$criterium)))


                            Of course, If you want you can apply it via dplyr, i.e.



                            library(dplyr)

                            df %>%
                            group_by(group) %>%
                            mutate(goal = f1(criterium),
                            goal = replace(goal, is.na(criterium)|!criterium, NA))


                            which gives,




                            # A tibble: 18 x 3
                            # Groups: group [2]
                            group criterium goal
                            <fct> <lgl> <dbl>
                            1 A NA NA
                            2 A TRUE 1
                            3 A TRUE 1
                            4 A TRUE 1
                            5 A FALSE NA
                            6 A FALSE NA
                            7 A TRUE 2
                            8 A TRUE 2
                            9 A FALSE NA
                            10 A TRUE 3
                            11 A TRUE 3
                            12 A TRUE 3
                            13 B NA NA
                            14 B FALSE NA
                            15 B TRUE 1
                            16 B TRUE 1
                            17 B TRUE 1
                            18 B FALSE NA






                            share|improve this answer















                            A pure Base R solution, we can create a custom function via rle, and use it per group, i.e.



                            f1 <- function(x) 
                            x[is.na(x)] <- FALSE
                            rle1 <- rle(x)
                            y <- rle1$values
                            rle1$values[!y] <- 0
                            rle1$values[y] <- cumsum(rle1$values[y])
                            return(inverse.rle(rle1))



                            do.call(rbind,
                            lapply(split(df, df$group), function(i)i$goal <- f1(i$criterium);
                            i$goal <- replace(i$goal, is.na(i$criterium)))


                            Of course, If you want you can apply it via dplyr, i.e.



                            library(dplyr)

                            df %>%
                            group_by(group) %>%
                            mutate(goal = f1(criterium),
                            goal = replace(goal, is.na(criterium)|!criterium, NA))


                            which gives,




                            # A tibble: 18 x 3
                            # Groups: group [2]
                            group criterium goal
                            <fct> <lgl> <dbl>
                            1 A NA NA
                            2 A TRUE 1
                            3 A TRUE 1
                            4 A TRUE 1
                            5 A FALSE NA
                            6 A FALSE NA
                            7 A TRUE 2
                            8 A TRUE 2
                            9 A FALSE NA
                            10 A TRUE 3
                            11 A TRUE 3
                            12 A TRUE 3
                            13 B NA NA
                            14 B FALSE NA
                            15 B TRUE 1
                            16 B TRUE 1
                            17 B TRUE 1
                            18 B FALSE NA







                            share|improve this answer














                            share|improve this answer



                            share|improve this answer








                            edited Apr 10 at 9:59

























                            answered Apr 10 at 7:29









                            SotosSotos

                            32.2k51843




                            32.2k51843





















                                4














                                A data.table option using rle



                                library(data.table)
                                DT <- as.data.table(dat)
                                DT[, goal :=
                                r <- rle(replace(criterium, is.na(criterium), FALSE))
                                r$values <- with(r, cumsum(values) * values)
                                out <- inverse.rle(r)
                                replace(out, out == 0, NA)
                                , by = group]
                                DT
                                # group criterium goal
                                # 1: A NA NA
                                # 2: A TRUE 1
                                # 3: A TRUE 1
                                # 4: A TRUE 1
                                # 5: A FALSE NA
                                # 6: A FALSE NA
                                # 7: A TRUE 2
                                # 8: A TRUE 2
                                # 9: A FALSE NA
                                #10: A TRUE 3
                                #11: A TRUE 3
                                #12: A TRUE 3
                                #13: B NA NA
                                #14: B FALSE NA
                                #15: B TRUE 1
                                #16: B TRUE 1
                                #17: B TRUE 1
                                #18: B FALSE NA


                                step by step



                                When we call r <- rle(replace(criterium, is.na(criterium), FALSE)) we get an object of class rle



                                r
                                #Run Length Encoding
                                # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                                # values : logi [1:9] FALSE TRUE FALSE TRUE FALSE TRUE ...


                                We manipulate the values compenent in the following way



                                r$values <- with(r, cumsum(values) * values)
                                r
                                #Run Length Encoding
                                # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                                # values : int [1:9] 0 1 0 2 0 3 0 4 0


                                That is, we replaced TRUEs with the cumulative sum of values and set the FALSEs to 0. Now inverse.rle returns a vector in which values will repeated lenghts times



                                out <- inverse.rle(r)
                                out
                                # [1] 0 1 1 1 0 0 2 2 0 3 3 3 0 0 4 4 4 0


                                This is almost what OP wants but we need to replace the 0s with NA



                                replace(out, out == 0, NA)


                                This is done for each group.



                                data



                                dat <- structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
                                1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
                                "B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
                                FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
                                TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
                                -18L))





                                share|improve this answer

























                                • Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

                                  – Humpelstielzchen
                                  Apr 10 at 7:59






                                • 1





                                  @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

                                  – markus
                                  Apr 10 at 8:02












                                • Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

                                  – Humpelstielzchen
                                  Apr 10 at 8:36















                                4














                                A data.table option using rle



                                library(data.table)
                                DT <- as.data.table(dat)
                                DT[, goal :=
                                r <- rle(replace(criterium, is.na(criterium), FALSE))
                                r$values <- with(r, cumsum(values) * values)
                                out <- inverse.rle(r)
                                replace(out, out == 0, NA)
                                , by = group]
                                DT
                                # group criterium goal
                                # 1: A NA NA
                                # 2: A TRUE 1
                                # 3: A TRUE 1
                                # 4: A TRUE 1
                                # 5: A FALSE NA
                                # 6: A FALSE NA
                                # 7: A TRUE 2
                                # 8: A TRUE 2
                                # 9: A FALSE NA
                                #10: A TRUE 3
                                #11: A TRUE 3
                                #12: A TRUE 3
                                #13: B NA NA
                                #14: B FALSE NA
                                #15: B TRUE 1
                                #16: B TRUE 1
                                #17: B TRUE 1
                                #18: B FALSE NA


                                step by step



                                When we call r <- rle(replace(criterium, is.na(criterium), FALSE)) we get an object of class rle



                                r
                                #Run Length Encoding
                                # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                                # values : logi [1:9] FALSE TRUE FALSE TRUE FALSE TRUE ...


                                We manipulate the values compenent in the following way



                                r$values <- with(r, cumsum(values) * values)
                                r
                                #Run Length Encoding
                                # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                                # values : int [1:9] 0 1 0 2 0 3 0 4 0


                                That is, we replaced TRUEs with the cumulative sum of values and set the FALSEs to 0. Now inverse.rle returns a vector in which values will repeated lenghts times



                                out <- inverse.rle(r)
                                out
                                # [1] 0 1 1 1 0 0 2 2 0 3 3 3 0 0 4 4 4 0


                                This is almost what OP wants but we need to replace the 0s with NA



                                replace(out, out == 0, NA)


                                This is done for each group.



                                data



                                dat <- structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
                                1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
                                "B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
                                FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
                                TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
                                -18L))





                                share|improve this answer

























                                • Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

                                  – Humpelstielzchen
                                  Apr 10 at 7:59






                                • 1





                                  @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

                                  – markus
                                  Apr 10 at 8:02












                                • Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

                                  – Humpelstielzchen
                                  Apr 10 at 8:36













                                4












                                4








                                4







                                A data.table option using rle



                                library(data.table)
                                DT <- as.data.table(dat)
                                DT[, goal :=
                                r <- rle(replace(criterium, is.na(criterium), FALSE))
                                r$values <- with(r, cumsum(values) * values)
                                out <- inverse.rle(r)
                                replace(out, out == 0, NA)
                                , by = group]
                                DT
                                # group criterium goal
                                # 1: A NA NA
                                # 2: A TRUE 1
                                # 3: A TRUE 1
                                # 4: A TRUE 1
                                # 5: A FALSE NA
                                # 6: A FALSE NA
                                # 7: A TRUE 2
                                # 8: A TRUE 2
                                # 9: A FALSE NA
                                #10: A TRUE 3
                                #11: A TRUE 3
                                #12: A TRUE 3
                                #13: B NA NA
                                #14: B FALSE NA
                                #15: B TRUE 1
                                #16: B TRUE 1
                                #17: B TRUE 1
                                #18: B FALSE NA


                                step by step



                                When we call r <- rle(replace(criterium, is.na(criterium), FALSE)) we get an object of class rle



                                r
                                #Run Length Encoding
                                # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                                # values : logi [1:9] FALSE TRUE FALSE TRUE FALSE TRUE ...


                                We manipulate the values compenent in the following way



                                r$values <- with(r, cumsum(values) * values)
                                r
                                #Run Length Encoding
                                # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                                # values : int [1:9] 0 1 0 2 0 3 0 4 0


                                That is, we replaced TRUEs with the cumulative sum of values and set the FALSEs to 0. Now inverse.rle returns a vector in which values will repeated lenghts times



                                out <- inverse.rle(r)
                                out
                                # [1] 0 1 1 1 0 0 2 2 0 3 3 3 0 0 4 4 4 0


                                This is almost what OP wants but we need to replace the 0s with NA



                                replace(out, out == 0, NA)


                                This is done for each group.



                                data



                                dat <- structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
                                1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
                                "B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
                                FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
                                TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
                                -18L))





                                share|improve this answer















                                A data.table option using rle



                                library(data.table)
                                DT <- as.data.table(dat)
                                DT[, goal :=
                                r <- rle(replace(criterium, is.na(criterium), FALSE))
                                r$values <- with(r, cumsum(values) * values)
                                out <- inverse.rle(r)
                                replace(out, out == 0, NA)
                                , by = group]
                                DT
                                # group criterium goal
                                # 1: A NA NA
                                # 2: A TRUE 1
                                # 3: A TRUE 1
                                # 4: A TRUE 1
                                # 5: A FALSE NA
                                # 6: A FALSE NA
                                # 7: A TRUE 2
                                # 8: A TRUE 2
                                # 9: A FALSE NA
                                #10: A TRUE 3
                                #11: A TRUE 3
                                #12: A TRUE 3
                                #13: B NA NA
                                #14: B FALSE NA
                                #15: B TRUE 1
                                #16: B TRUE 1
                                #17: B TRUE 1
                                #18: B FALSE NA


                                step by step



                                When we call r <- rle(replace(criterium, is.na(criterium), FALSE)) we get an object of class rle



                                r
                                #Run Length Encoding
                                # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                                # values : logi [1:9] FALSE TRUE FALSE TRUE FALSE TRUE ...


                                We manipulate the values compenent in the following way



                                r$values <- with(r, cumsum(values) * values)
                                r
                                #Run Length Encoding
                                # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                                # values : int [1:9] 0 1 0 2 0 3 0 4 0


                                That is, we replaced TRUEs with the cumulative sum of values and set the FALSEs to 0. Now inverse.rle returns a vector in which values will repeated lenghts times



                                out <- inverse.rle(r)
                                out
                                # [1] 0 1 1 1 0 0 2 2 0 3 3 3 0 0 4 4 4 0


                                This is almost what OP wants but we need to replace the 0s with NA



                                replace(out, out == 0, NA)


                                This is done for each group.



                                data



                                dat <- structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
                                1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
                                "B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
                                FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
                                TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
                                -18L))






                                share|improve this answer














                                share|improve this answer



                                share|improve this answer








                                edited Apr 10 at 11:34

























                                answered Apr 10 at 7:26









                                markusmarkus

                                16.4k11336




                                16.4k11336












                                • Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

                                  – Humpelstielzchen
                                  Apr 10 at 7:59






                                • 1





                                  @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

                                  – markus
                                  Apr 10 at 8:02












                                • Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

                                  – Humpelstielzchen
                                  Apr 10 at 8:36

















                                • Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

                                  – Humpelstielzchen
                                  Apr 10 at 7:59






                                • 1





                                  @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

                                  – markus
                                  Apr 10 at 8:02












                                • Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

                                  – Humpelstielzchen
                                  Apr 10 at 8:36
















                                Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

                                – Humpelstielzchen
                                Apr 10 at 7:59





                                Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

                                – Humpelstielzchen
                                Apr 10 at 7:59




                                1




                                1





                                @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

                                – markus
                                Apr 10 at 8:02






                                @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

                                – markus
                                Apr 10 at 8:02














                                Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

                                – Humpelstielzchen
                                Apr 10 at 8:36





                                Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

                                – Humpelstielzchen
                                Apr 10 at 8:36

















                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Stack Overflow!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55606323%2frank-groups-within-a-grouped-sequence-of-true-false-and-na%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

                                Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

                                Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?